精英家教网 > 高中数学 > 题目详情
8.已知F1(0,-1),F2(0,1)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为(  )
A.$\frac{{y}^{2}}{16}$+$\frac{{x}^{2}}{15}$=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1D.$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1

分析 由题意可设椭圆的标准方程为:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0).△MF2N的周长为8,可得4a=8,又c=1,a2=b2+c2,联立解出即可得出.

解答 解:由题意可设椭圆的标准方程为:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0).
∵△MF2N的周长为8,∴4a=8,又c=1,a2=b2+c2
解得a=2,b2=3.
可得椭圆的标准方程为:$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1.
故选:D.

点评 本题考查了椭圆的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.圆x2+y2-4x+2y=0上一点P(1,1)的圆的切线方程为:x-2y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a=cos50°cos127°+cos40°cos37°,b=$\frac{\sqrt{2}}{2}$(sin56°-cos56°),c=$\frac{1-ta{n}^{2}39°}{1+ta{n}^{2}39°}$,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知正项数列{an} 中,$\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+…+$\sqrt{{a}_{n}}$=$\frac{n(n+1)}{2}$(n∈N*),则数列{an}的通项公式为(  )
A.an=nB.an=n2C.an=$\frac{n}{2}$D.an=$\frac{{n}^{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知点M到定点F(1,0)和定直线x=4的距离之比为$\frac{1}{2}$,设动点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设P(4,0),过点F作斜率不为0的直线l与曲线C交于两点A,B,设直线PA,PB的斜率分别是k1,k2,求k1+k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知圆C的方程为x2+y2=1,直线l的方程为x+y=2,过圆C上任意一点P作与l夹角为45°的直线交l于A,则|PA|的最小值为(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}-1$D.$2-\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知三棱锥A-BCD,AD⊥平面BCD,BD⊥CD,AD=BD=2,CD=2$\sqrt{3}$,E,F分别是AC,BC的中点.
(1)P为线段BC上一点.且CP=2PB,求证:AP⊥DE.
(2)求直线AC与平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=x-2,g(x)=2x-5,则不等式|f(x)|+|g(x)|≤2的解集为[$\frac{5}{3}$,3];|f(2x)|+|g(x)|的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{2}$x2-(a+1)x+alnx+1.
(Ⅰ)若x=3是f(x)的极值点,求f(x)的单调区间;
(Ⅱ)f(x)≥1恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案