精英家教网 > 高中数学 > 题目详情
11.如图,在五棱锥P-ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2$\sqrt{2}$,BC=2AE=4,三角形PAB是等腰三角形.
(1)求证:平面PCD⊥平面PAC;
(2)求直线PB与平面PCD所成角的大小.

分析 (1)利用余弦定理求出AC,根据勾股定理得出AB⊥AC,即CD⊥AC,由PA⊥平面ABCDE得出CD⊥PA,故CD⊥平面PAC,从而得出平面PAC⊥平面PCD;
(2)做AM⊥PC即可证明AM⊥平面PCD,又AB∥CD,故B到平面PCD的距离h=AM,求出AM,BP的值即可得出直线PB与平面PCD所成角的正弦值.

解答 (1)证明:在△ABC中,∵∠ABC=45°,BC=4,AB=2$\sqrt{2}$,
∴AC2=AB2+BC2-2AB•BC•cos45°=8,
∴AC=2$\sqrt{2}$,∴BC2=AB2+AC2
∴BA⊥AC.
又PA⊥平面ABCDE,AB∥CD,CD?平面ABCDE,
∴CD⊥PA,CD⊥AC,
又PA?平面PAC,AC?平面PAC,PA∩AC=A,
∴CD⊥平面PAC,又CD?平面PCD,
∴平面PCD⊥平面PAC.
(2)∵AB=AP=AC=2$\sqrt{2}$,
∴PB=PC=$\sqrt{2}$AB=4,
过A做AM⊥PC,则AM=$\frac{AP•AC}{PC}$=2,
∵平面APC⊥平面PCD,平面APC∩平面PCD=PC,AM⊥PC,AM?平面APC,
∴AM⊥平面PCD,
即A到平面PCD的距离为AM=2,
∵AB∥CD,
∴B到平面PCD的距离h=AM=2,
设直线PB与平面PCD所成角为θ,
∴sinθ=$\frac{h}{BP}$=$\frac{1}{2}$,∴θ=30°.

点评 本题考查了面面垂直的判定,线面角的计算,也可利用空间向量求出,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax+lnx,函数g(x)=ex
(1)求f(x)的极值;
(2)若?x∈(0,+∞),使得g(x)<$\frac{x-m+3}{\sqrt{x}}$成立,试求实数m的取值范围;
(3)当a=0时,对于?x∈(0,+∞),求证:g(x)-f(x)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=cos(x+\frac{π}{6})sin(x+\frac{π}{3})-sinxcosx-\frac{1}{4}$.
(Ⅰ)求函数f(x)的最小正周期和单调递减区间;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若$b=2,f(\frac{A}{2})=0,B=\frac{π}{6}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知直线l:$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,a≥2为l的倾斜角),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-6ρcosθ+5=0.若直线l与曲线C相切,则α的值为$\frac{π}{6}$或$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个几何体的某一方向的视图是圆,则它不可能是(  )
A.球体B.圆锥C.圆柱D.长方体

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=3+2cosθ}\\{y=-4+2sinθ}\end{array}\right.$(θ为参数).
(Ⅰ)以原点为极点、x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;
(Ⅱ)已知A(-2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值并写出此时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知某几何体的三视图如图所示,其中正视图和侧视图为全等的直角梯形,俯视图为直角三角形则该几何体的表面积为(  )
A.6+12$\sqrt{2}$B.16+12$\sqrt{2}$C.6+12$\sqrt{3}$D.16+12$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.把边长为2的正方形ABCD沿对角线BD折起,形成的三棱锥A-BCD的三视图如图所示,则这个三棱锥的表面积为(  )
A.2$\sqrt{3}$+4B.4$\sqrt{3}$C.8D.2$\sqrt{3}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直三棱柱ABC-A1B1C1中,底面ABC为等边三角形,且AA1=2AB,D、M 分别为AB,CC1的中点,求证:(1)CD∥平面A1BM
(2)求二面角A1-BM-D的大小的余弦值.

查看答案和解析>>

同步练习册答案