9£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1-g£¨x£©}{2}$•£¨x2+2x+a£©+$\frac{1+g£¨x£©}{2}$•ln|x|£¬ÆäÖÐa¡ÊR£¬g£¨x£©=$\left\{\begin{array}{l}{1£¬x£¾0}\\{-1£¬x£¼0}\end{array}\right.$£®ÉèA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©Îªº¯Êýf£¨x£©Í¼ÏóÉϵÄÁ½µã£¬ÇÒx1£¼x2£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôº¯Êýf£¨x£©µÄͼÏóÔÚµãA£¬B´¦µÄÇÐÏß»¥Ïà´¹Ö±£¬ÇÒx2£¼0£¬Çóx2-x1µÄ×îСֵ£¬²¢Ö¸³ö´Ëʱx1£¬x2µÄÖµ£»
£¨3£©Èô´æÔÚx1£¬x2ʹº¯Êýf£¨x£©µÄͼÏóÔÚµãA£¬B´¦µÄÇÐÏßÖØºÏ£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÌÖÂÛx£¾0£¬x£¼0£¬ÓÉg£¨x£©¼´¿ÉµÃµ½f£¨x£©£»
£¨2£©Çó³öº¯ÊýµÄµ¼Êý£¬ÇóµÃÇеãA£¬B´¦µÄÇÐÏßµÄбÂÊ£¬ÔÙÓÉÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£¬»¯¼òÕûÀí£¬Óɶþ´Îº¯ÊýµÄÖµÓò¼´¿ÉµÃµ½×îСֵ£»
£¨3£©Çó³öf£¨x£©µÄͼÏóÔÚµãA£¬B´¦µÄÇÐÏß·½³Ì£¬ÓÉÁ½ÇÐÏßÖØºÏµÄÌõ¼þ£¬ÔÙÓɵ¼ÊýÇóµÃµ¥µ÷Çø¼ä£¬ÔËÓõ¥µ÷ÐÔ¼´¿ÉÇóµÃaµÄ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâÓУ¬f£¨x£©=$\left\{\begin{array}{l}{{x}^{2}+2x+a£¬x£¼0}\\{lnx£¬x£¾0}\end{array}\right.$£¬
£¨2£©Óɵ¼ÊýµÄ¼¸ºÎÒâÒå¿ÉÖª£¬µãA´¦µÄÇÐÏßбÂÊΪf¡ä£¨x1£©£¬
µãB´¦µÄÇÐÏßбÂÊΪf¡ä£¨x2£©£¬
¹Êµ±µãA´¦µÄÇÐÏßÓëµãB´¦µÄÇд¹Ö±Ê±£¬ÓÐf¡ä£¨x1£©•f¡ä£¨x2£©=-1
µ±x£¼0ʱ£¬¶Ôº¯Êýf£¨x£©Çóµ¼£¬µÃf¡ä£¨x£©=2x+2£®
ÒòΪx1£¼x2£¼0£¬ËùÒÔ£¨2x1+2£©£¨2x2+2£©=-1£¬
¼´4x1x2=-4£¨x1+x2£©-5£¬
x2-x1=$\sqrt{£¨{x}_{2}+{x}_{1}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}+4£¨{x}_{1}+{x}_{2}£©+5}$=$\sqrt{£¨{x}_{1}+{x}_{2}+2£©^{2}+1}$£¬
µ±x1+x2=-2£¬Ê±£¬x1x2=$\frac{3}{4}$£¬´Ëʱx1=-$\frac{3}{2}$£¬x2=-$\frac{1}{2}$£¬x2-x1È¡µÃ×îСֵ1£®
£¨3£©µ±x1£¼x2£¼0»òx2£¾x1£¾0ʱ£¬f¡ä£¨x1£©¡Ùf¡ä£¨x2£©£¬¹Êx1£¼0£¼x2£®
µ±x1£¼0ʱ£¬º¯Êýf£¨x£©µÄͼÏóÔڵ㣨x1£¬f£¨x1£©£©´¦µÄÇÐÏß·½³ÌΪ
y-£¨x12+2x1+a£©=£¨2x1+2£©£¨x-x1£©£¬¼´y=£¨2x1+2£©x-x12+a
µ±x2£¾0ʱ£¬º¯Êýf£¨x£©µÄͼÏóÔڵ㣨x2£¬f£¨x2£©£©´¦µÄÇÐÏß·½³ÌΪ
y-lnx2=$\frac{1}{{x}_{2}}$£¨x-x2£©£¬¼´y=$\frac{1}{{x}_{2}}$•x+lnx2-1£®
Á½ÇÐÏßÖØºÏµÄ³äÒªÌõ¼þÊÇ$\left\{\begin{array}{l}{\frac{1}{{x}_{2}}=2{x}_{1}+2}\\{ln{x}_{2}-1=a-{{x}_{1}}^{2}}\end{array}\right.$£¬
ÓÉx1£¼0£¼x2Öª£¬-1£¼x1£¼0£®
a=x12+ln$\frac{1}{2{x}_{1}+2}$-1=x12-ln£¨2x1+2£©-1£®
Éèh£¨x1£©=x12-ln£¨2x1+2£©-1£¨-1£¼x1£¼0£©£¬
Ôòh¡ä£¨x1£©=2x1-$\frac{1}{{x}_{1}+1}$£¼0£®
ËùÒÔh£¨x1£©£¨-1£¼x1£¼0£©ÊǼõº¯Êý£®
Ôòh£¨x1£©£¾h£¨0£©=-ln2-1£¬
ËùÒÔa£¾-ln2-1£®
ÓÖµ±x1¡Ê£¨-1£¬0£©ÇÒÇ÷½üÓÚ-1ʱ£¬h£¨x1£©ÎÞÏÞÔö´ó£¬ËùÒÔaµÄȡֵ·¶Î§ÊÇ£¨-ln2-1£¬+¡Þ£©£®
¹Êµ±º¯Êýf£¨x£©µÄͼÏóÔÚµãA£¬B´¦µÄÇÐÏßÖØºÏʱ£¬aµÄȡֵ·¶Î§ÊÇ£¨-ln2-1£¬+¡Þ£©£®

µãÆÀ ±¾Ì⿼²éµ¼ÊýµÄÔËÓãºÇóÇÐÏß·½³ÌºÍÇóµ¥µ÷Çø¼ä¡¢¼«ÖµºÍ×îÖµ£¬Ö÷Òª¿¼²éµ¼ÊýµÄ¼¸ºÎÒâÒ壬ͬʱ¿¼²éÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£¬¿¼²é»¯¼òÔËËãµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Éèf£¨n£©=£¨$\frac{1+i}{1-i}$£©n+£¨$\frac{1-i}{1+i}$£©n£¨n¡ÊN*£©£¬Ôò¼¯ºÏ{x|x=f£¨n£©}µÄ×Ó¼¯ÓУ¨¡¡¡¡£©
A£®2¸öB£®4¸öC£®8¸öD£®ÎÞÇî¶à¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÇóÖ¤£ºan+1+£¨a+1£©2n-1Äܱ»a2+a+1Õû³ý£¬n¡ÊN+£¬a¡ÊR£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑ֪ʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}{£¨x-y+6£©£¨x+y-6£©¡Ý0}\\{1¡Üx¡Ü4}\end{array}\right.$
£¨1£©Çóx2+y2-2µÄȡֵ·¶Î§£»
£¨2£©Çó$\frac{y}{x-3}$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®É躯Êýf£¨x£©=lnx£¬g£¨x£©=$\frac{x}{x+1}$£¬¼ÇF£¨x£©=f£¨x£©-g£¨x£©
£¨1£©ÇóÇúÏßy=f£¨x£©ÔÚx=e´¦µÄÇÐÏß·½³Ì£»
£¨2£©Çóº¯ÊýF£¨x£©ÔÚ[$\frac{1}{e}$£¬e2]ÉϵÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÇúÏßy=$\sqrt{x}$+lnxÔÚx=1´¦µÄÇÐÏßµÄбÂÊÊÇ$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÓöþÏîʽ¶¨ÀíÖ¤Ã÷£º1110-1Äܱ»100Õû³ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®tan$\frac{A}{2}$=$\frac{m}{n}$£¨mn¡Ù0£©£¬ÔòmcosA-nsinAµÄÖµÊÇ£¨¡¡¡¡£©
A£®nB£®-nC£®mD£®-m

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª2x=3y=5z£¬ÊԱȽÏ2x¡¢3y¡¢5zµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸