精英家教网 > 高中数学 > 题目详情
18.若a>0,b>0,且2a+b=1,则2$\sqrt{ab}$-4a2-b2的最大值是$\frac{\sqrt{2}-1}{2}$.

分析 利用基本不等式的性质即可得出.

解答 解:∵2a+b=1,a>0,b>0,
∴2$\sqrt{ab}$-4a2-b2=$\sqrt{2}$•$\sqrt{2ab}$-[(2a)2+b2]≤$\sqrt{2}$•$\frac{2a+b}{2}$-$\frac{(2a+b)^{2}}{2}$=$\frac{\sqrt{2}}{2}$-$\frac{1}{2}$=$\frac{\sqrt{2}-1}{2}$,
当且仅当a=$\frac{1}{4}$,b=$\frac{1}{2}$时,等号成立,
故答案为:$\frac{\sqrt{2}-1}{2}$.

点评 本题考查了基本不等式及其变形应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.从5名男公务员和4名女公务员中选出3人,分别派到西部的三个不同地区,要求3人中既有男公务员又有女公务员,则不同的选派方法种数是420.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,由曲线y=x2+4与直线y=5x所围成平面图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱锥P-ABC中,∠ACB=90°,CB=4,AB=12,D为
AB中点,M为PB中点,且△PDB是正三角形,PA⊥PC.
(1)求证:DM∥平面PAC;
(2)求证:平面PAC⊥平面ABC;
(3)求三棱锥M-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=lnx-ax+$\frac{1-a}{x}$-1(a∈R).
(Ⅰ)当a=-1时,求曲线y=f(x)在(2,f(2))处的切线方程;
(Ⅱ)当0≤a≤$\frac{1}{2}$时,试讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线$\left\{\begin{array}{l}{x=-1+t}\\{y=9-t}\end{array}\right.$(t为参数)被圆$\left\{\begin{array}{l}{x=5cosθ+3}\\{y=5sinθ-1}\end{array}\right.$(θ为参数)所截得的弦长为$2\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,P(x0,y0)是椭圆$\frac{{x}^{2}}{3}$+y2=1的上的点,l是椭圆在点P处的切线,O是坐标原点,OQ∥l与椭圆的一个交点是Q,P,Q都在x轴上方
(1)当P点坐标为($\frac{3}{2}$,$\frac{1}{2}$)时,利用题后定理写出l的方程,并验证l确定是椭圆的切线;
(2)当点P在第一象限运动时(可以直接应用定理)
①求△OPQ的面积
②求直线PQ在y轴上的截距的取值范围.
定理:若点(x0,y0)在椭圆$\frac{{x}^{2}}{3}$+y2=1上,则椭圆在该点处的切线方程为$\frac{{x}_{0}x}{3}$+y0y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.随机变量X服从正态分布(3,σ2),且P(X≤4)=0.84,则P(2<X<4)=(  )
A.0.16B.0.32C.0.68D.0.84

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=1,an+1=$\frac{2(n+1)}{n}{a_n}$,设bn=$\frac{a_n}{n}$,n∈N*.
(1)证明{bn}是等比数列(指出首项和公比);
(2)求数列{log2bn}的前n项和Tn

查看答案和解析>>

同步练习册答案