精英家教网 > 高中数学 > 题目详情
9.从5名男公务员和4名女公务员中选出3人,分别派到西部的三个不同地区,要求3人中既有男公务员又有女公务员,则不同的选派方法种数是420.

分析 从5名男公务员和4名女公务员中选出3人,有C93种选法,再排除其中只选派3名男公务员的方案数为C53=10,只有女公务员的方案为C43种,最后分别派到西部的三个不同地区,由分步计数原理计算可得答案.

解答 解:由题意,从5名男公务员和4名女公务员中选出3人,有C93种选法,
再排除其中只选派3名男公务员的方案数为C53=10,
只有女公务员的方案为C43种,
利用间接法可得既有男公务员又有女公务员的选法有C93-C53-C43种,
分别派到西部的三个不同地区共有A33(C93-C53-C43)=420;
故答案为:420.

点评 本题考查排列、组合的综合应用,注意当遇到求出现至多或至少这种语言时,一般要用间接法来解,正难则反.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.如图,在△ABC中,D为BC的中点,E为AD的中点,直线BE与边AC交于点F,若AD=BC=6,则$\overrightarrow{AB}•\overrightarrow{CF}$=-18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知复数z满足z=$\frac{5+2i}{2-5i}$(i是虚数单位),则z2017=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥P-ABCD中,底面ABCD是菱形,$∠BAD=\frac{π}{3}$,PA=PD,F为AD的中点,PD⊥BF.
(1)求证:AD⊥PB;
(2)若菱形ABCD的边长为6,PA=5,求四面体PBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.数列{an}的前n项和为Sn,满足a1=1,${2^{{a_{n+1}}}}=2•{4^{a_n}}$,则S5的值为(  )
A.57B.58C.62D.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.古有苏秦、张仪唇枪舌剑驰骋于乱世之秋,今看我一中学子论天、论地、指点江山.现在高二某班需从甲、乙、丙、丁、戊五位同学中,选出四位同学组成重庆一中“口才季”中的一个辩论队,根据他们的文化、思维水平,分别担任一辩、二辩、三辩、四辩,其中四辩必须由甲或乙担任,而丙与丁不能担任一辩,则不同组队方式有(  )
A.12种B.16种C.20种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)是定义在[m,n]上的函数,记F(x)=f(x)-(ax+b),|F(x)|的最大值为M(a,b).若存在m≤x1<x2<x3≤n,满足|F(x1)|=M(a,b),F(x2)=-F(x1).F(x3)=F(x1),则称一次函数y=ax+b是f(x)的“逼近函数”,此时的M(a,b)称为f(x)在[m,n]上的“逼近确界”.
(1)验证:y=4x-1是g(x)=2x2,x∈[0,2]的“逼近函数”;
(2)已知f(x)=$\sqrt{x}$,x∈[0,4],F(0)=F(4)=-M(a,b).若y=ax+b是f(x)的“逼近函数”,求a,b的值;
(3)已知f(x)=$\sqrt{x}$,x∈[0,4]的逼近确界为$\frac{1}{4}$,求证:对任意常数a,b,M(a,b)≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数$f(x)=6-12x+{x^3},x∈[-\frac{1}{3},1]$的最值以及对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a>0,b>0,且2a+b=1,则2$\sqrt{ab}$-4a2-b2的最大值是$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

同步练习册答案