精英家教网 > 高中数学 > 题目详情
20.已知复数z满足z=$\frac{5+2i}{2-5i}$(i是虚数单位),则z2017=(  )
A.1B.-1C.iD.-i

分析 利用复数代数形式的乘除运算化简z,再由虚数单位i的运算性质求解.

解答 解:∵z=$\frac{5+2i}{2-5i}$=$\frac{(5+2i)(2+5i)}{(2-5i)(2+5i)}=\frac{29i}{29}=i$,
∴z2017=(i4504•i=i.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了虚数单位i的运算性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知抛物线E:x2=4y的焦点为F,过点F的直线l交抛物线于A,B两点.
(1)若点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值;
(2)过A,B分别作抛物线E的切线l1,l2,若l1与l2交于点P,求$\frac{\overrightarrow{FA}•\overrightarrow{FB}}{|\overrightarrow{PF}{|}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC的内角A,B,C对边分别为a,b,c,若满足$\frac{2c-b}{a}$=$\frac{cosB}{cosA}$,且$a=2\sqrt{5}$,则△ABC面积的最大值5$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,且△PAD是边长为2的等边三角形,$PC=\sqrt{13}$,点M是PC的中点.
(I)求证:PA∥平面MBD;
(II)求四面体P-BDM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点P($\sqrt{3}$,1)且离心率为$\frac{\sqrt{6}}{3}$,F为椭圆的右焦点,过F的直线交椭圆C于M,N两点,定点A(-4,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若△AMN面积为3$\sqrt{3}$,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆A:x2+y2+2x-15=0,过点B(1,0)作直线l(与x轴不重合)交圆A于C,D两点,过B作AC的平行线交AD于点E.
(Ⅰ) 求点E的轨迹方程;
(Ⅱ)动点M在曲线E上,动点N在直线$l:y=2\sqrt{3}$上,若OM⊥ON,求证:原点O到直线MN的距离是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=sin($\frac{x}{4}$-$\frac{π}{3}$),若存在实数x1,x2使得对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值是(  )
A.B.C.D.π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.从5名男公务员和4名女公务员中选出3人,分别派到西部的三个不同地区,要求3人中既有男公务员又有女公务员,则不同的选派方法种数是420.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,由曲线y=x2+4与直线y=5x所围成平面图形的面积.

查看答案和解析>>

同步练习册答案