精英家教网 > 高中数学 > 题目详情
8.如图,四棱锥P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,且△PAD是边长为2的等边三角形,$PC=\sqrt{13}$,点M是PC的中点.
(I)求证:PA∥平面MBD;
(II)求四面体P-BDM的体积.

分析 (Ⅰ)连接AC交BD于O,则O为AC的中点,连接MO,由三角形中位线定理可得PA∥MO,再由线面平行的判定可得PA∥平面MBD;
(Ⅱ)取AD中点H,连接PH,则PH⊥AD,由面面垂直的性质可得PH⊥平面ABCD.然后利用等积法求得四面体P-BDM的体积.

解答 (Ⅰ)证明:连接AC交BD于O,则O为AC的中点,连接MO,
∵M为PC的中点,O为AC的中点,
∴PA∥MO,
又MO?平面MBD,PA?平面MBD,
∴PA∥平面MBD;
(Ⅱ)解:取AD中点H,连接PH,则PH⊥AD,
∵平面PAD⊥平面ABCD,AD为交线,
∴PH⊥平面ABCD.
在直角三角形PHC中,HC=$\sqrt{P{C}^{2}-P{H}^{2}}=\sqrt{10}$.
∴DC=$\sqrt{H{C}^{2}-H{D}^{2}}=3$.
又∵VP-BDM=VP-BDC-VM-BDC=$\frac{1}{2}{V}_{P-BDC}$,
∴${V}_{P-BDM}=\frac{1}{2}×\frac{1}{3}|PH|×{S}_{△BDC}=\frac{\sqrt{3}}{6}×\frac{1}{2}×2×3=\frac{\sqrt{3}}{2}$.

点评 本题考查直线与平面平行的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.二面角α-AB-β的平面角是锐角θ,M∈α,MN⊥β,N∈β,C∈AB,∠MCB为锐角,则(  )
A.∠MCN<θB.∠MCN=θ
C.∠MCN>θD.以上三种情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,在△ABC中,D为BC的中点,E为AD的中点,直线BE与边AC交于点F,若AD=BC=6,则$\overrightarrow{AB}•\overrightarrow{CF}$=-18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={-1,a},B={-1,b},且A∪B={-1,-2,3},则ab=(  )
A.-6B.-1C.1D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,当甲船位于A处时获悉,在其正东方向相距10海里的B处有个艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°,相距6海里的C处的乙船,乙船立即朝北偏东(θ+30°)的方向沿直线前往B处营救,则sinθ的值为$\frac{5\sqrt{3}}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2sinxcosx-$\sqrt{3}$(cos2x-sin2x).
(1)求f(x)的最小正周期;
(2)若f(x0)=$\sqrt{3}$,且x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知复数z满足z=$\frac{5+2i}{2-5i}$(i是虚数单位),则z2017=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥P-ABCD中,底面ABCD是菱形,$∠BAD=\frac{π}{3}$,PA=PD,F为AD的中点,PD⊥BF.
(1)求证:AD⊥PB;
(2)若菱形ABCD的边长为6,PA=5,求四面体PBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数$f(x)=6-12x+{x^3},x∈[-\frac{1}{3},1]$的最值以及对应的x的值.

查看答案和解析>>

同步练习册答案