精英家教网 > 高中数学 > 题目详情
18.二面角α-AB-β的平面角是锐角θ,M∈α,MN⊥β,N∈β,C∈AB,∠MCB为锐角,则(  )
A.∠MCN<θB.∠MCN=θ
C.∠MCN>θD.以上三种情况都有可能

分析 过M作MO⊥AB于O,过N作NO⊥AB于O,则∠MON=θ,连接CN,在Rt△CMN中,sin∠MCN=$\frac{MN}{CN}$$<\frac{MN}{ON}=sinθ$.即可判定.

解答 解:如图,过M作MO⊥AB于O,过N作NO⊥AB于O,则∠MON=θ,
连接CN,在Rt△CON中,有CM>OM,
在Rt△CMN中,sin∠MCN=$\frac{MN}{CM}<\frac{MN}{OM}$=sinθ,∴∠MCN<θ,
故选:A.

点评 本题考查了空间角的大小判定,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{4π}{3}$+$\frac{9\sqrt{3}}{4}$B.$\frac{4π}{3}$+$\frac{27\sqrt{3}}{4}$C.$\frac{8π}{3}$+$\frac{9\sqrt{3}}{4}$D.$\frac{8π}{3}$+$\frac{27\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)=Asin (ω x+φ)+(A>0,ω>0,|φ|<π})的图象如图所示,则f(3π)=(  )
A.-$\sqrt{2}$B.$\sqrt{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知菱形ABCD的边长为4,∠BAD=150°,点E,F分别在边BC,CD上,2CE=3EB,DC=λDF(λ∈R,λ≠0),若$\overrightarrow{AE}•\overrightarrow{AF}=\frac{42}{5}({1-\sqrt{3}})$,则λ的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$P:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点为F(1,0),且经过点$({\frac{2}{3},\frac{{2\sqrt{6}}}{3}})$
(1)求椭圆P的方程;
(2)已知正方形ABCD的顶点A,C在椭圆P上,顶点B,D在直线7x-7y+1=0上,求该正方形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知梯形ABCD中,∠ABC=∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,P是DC的中点,则|$\overrightarrow{PA}$+2$\overrightarrow{PB}$|=(  )
A.$\frac{\sqrt{82}}{2}$B.2$\sqrt{5}$C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线E:x2=4y的焦点为F,过点F的直线l交抛物线于A,B两点.
(1)若点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值;
(2)过A,B分别作抛物线E的切线l1,l2,若l1与l2交于点P,求$\frac{\overrightarrow{FA}•\overrightarrow{FB}}{|\overrightarrow{PF}{|}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设全集U={x|1≤x≤5},若集合M={1},则∁UM=(1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,且△PAD是边长为2的等边三角形,$PC=\sqrt{13}$,点M是PC的中点.
(I)求证:PA∥平面MBD;
(II)求四面体P-BDM的体积.

查看答案和解析>>

同步练习册答案