精英家教网 > 高中数学 > 题目详情
9.已知f(x)=Asin (ω x+φ)+(A>0,ω>0,|φ|<π})的图象如图所示,则f(3π)=(  )
A.-$\sqrt{2}$B.$\sqrt{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 首先通过最高点与相邻零点横坐标得到函数的周期,通过图象经过的最高点得到A,和φ,然后求函数值.

解答 解:由函数图象得到函数的周期为T=4($\frac{9π}{4}-\frac{3π}{4}$)=6π=$\frac{2π}{ω}$,所以$ω=\frac{1}{3}$,
由图象经过最高点($\frac{3π}{4}$,2),所以A=2,并且sin($\frac{1}{3}×\frac{3π}{4}+$φ)=1,所以φ=$\frac{π}{4}$,
所以f(x)=2sin($\frac{1}{3}$x$+\frac{π}{4}$),所以f(3π)=2sin($π+\frac{π}{4}$)=$-\sqrt{2}$;
故选A.

点评 本题考查了三角函数的图象;注意相邻最高点与零点,得到周期、振幅以及初相;熟练掌握正弦函数的图象是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.将7人分成3组,要求每组至多3人,则不同的分组方法种数是175.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}的前n项和是Sn,则下列四个命题中,错误的是(  )
A.若数列{an}是公差为d的等差数列,则数列{$\frac{{S}_{n}}{n}$}的公差为$\frac{d}{2}$的等差数列
B.若数列{$\frac{{S}_{n}}{n}$}是公差为d的等差数列,则数列{an}是公差为2d的等差数列
C.若数列{an}是等差数列,则数列的奇数项,偶数项分别构成等差数列
D.若数列{an}的奇数项,偶数项分别构成公差相等的等差数列,则{an}是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥D-ABCM中,AD⊥DM,底面四边形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=4,平面AMD⊥平面ABCM.
(Ⅰ)证明:AD⊥BD;
(Ⅱ)若AD=DM,
(i)求直线BD与平面AMD所成角的正弦值;
(ii)求三棱锥D-MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$α∈(0,\frac{π}{2})$,且$2cos2α=cos(α-\frac{π}{4})$,则sin2α的值为(  )
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$-\frac{7}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.tan40°+tan80°-$\sqrt{3}$tan40°tan80°的值是(  )
A.$\sqrt{3}$B.$-\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中正确命题的个数是
(1)对于命题p:?x∈R,使得x2+x+1<0,则?p:?x∈R,均有x2+x+1>0;
(2)命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
(3)设ξ~B(n,p),已知Eξ=3,Dξ=$\frac{9}{4}$,则n与p值分别为12,$\frac{1}{4}$
(4)m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件.(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.二面角α-AB-β的平面角是锐角θ,M∈α,MN⊥β,N∈β,C∈AB,∠MCB为锐角,则(  )
A.∠MCN<θB.∠MCN=θ
C.∠MCN>θD.以上三种情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,在△ABC中,D为BC的中点,E为AD的中点,直线BE与边AC交于点F,若AD=BC=6,则$\overrightarrow{AB}•\overrightarrow{CF}$=-18.

查看答案和解析>>

同步练习册答案