| A. | 若数列{an}是公差为d的等差数列,则数列{$\frac{{S}_{n}}{n}$}的公差为$\frac{d}{2}$的等差数列 | |
| B. | 若数列{$\frac{{S}_{n}}{n}$}是公差为d的等差数列,则数列{an}是公差为2d的等差数列 | |
| C. | 若数列{an}是等差数列,则数列的奇数项,偶数项分别构成等差数列 | |
| D. | 若数列{an}的奇数项,偶数项分别构成公差相等的等差数列,则{an}是等差数列 |
分析 根据等差数列的通项公式和前n项和公式进行分析,并作出判断.
解答 解:A、若等差数列{an}的首项为a1,公差为d,前n项的和为Sn,则数列{$\frac{{S}_{n}}{n}$}为等差数列,且通项为$\frac{{S}_{n}}{n}$=a1+(n-1)$\frac{d}{2}$,即数列{$\frac{{S}_{n}}{n}$}的公差为$\frac{d}{2}$的等差数列,故说法正确;
B、由题意得:$\frac{{S}_{n}}{n}$=a1+(n-1)d,所以Sn=na1+n(n-1)d,则an=Sn-Sn-1=a1+2(n-1)d,即数列{an}是公差为2d的等差数列,故说法正确;
C、若数列{an}是等差数列的公差为d,则数列的奇数项,偶数项都是公差为2d的等差数列,说法正确;
D、若数列{an}的奇数项,偶数项分别构成公差相等的等差数列,则{an}不一定是等差数列,例如:{1,4,3,6,5,8,7},说法错误.
故选:D.
点评 本题考查等差数列的性质,考查等差数列的求和公式,考查运算与推理、证明的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4π}{3}$+$\frac{9\sqrt{3}}{4}$ | B. | $\frac{4π}{3}$+$\frac{27\sqrt{3}}{4}$ | C. | $\frac{8π}{3}$+$\frac{9\sqrt{3}}{4}$ | D. | $\frac{8π}{3}$+$\frac{27\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com