分析 把已知不等式变形,运用a-c=a-b+b-c,然后利用基本不等式求最值得答案.
解答 解:∵a>c,∴a-c>0,
由$\frac{1}{a-b}+\frac{1}{b-c}≥\frac{m}{a-c}$恒成立,得
m≤$\frac{a-c}{a-b}+\frac{a-c}{b-c}=\frac{a-b+b-c}{a-b}+\frac{a-b+b-c}{b-c}$=$2+\frac{b-c}{a-b}+\frac{a-b}{b-c}$恒成立.
又a>b>c,∴a-b>0,b-c>0,
则$2+\frac{b-c}{a-b}+\frac{a-b}{b-c}≥2+2\sqrt{\frac{b-c}{a-b}•\frac{a-b}{b-c}}=4$.
当且仅当b-c=a-b,即a+c=2b时上式等号成立.
∴m≤4.
∴m的取值范围是:(-∞,4].
故答案为:(-∞,4].
点评 本题考查恒成立问题,训练了利用基本不等式求最值,灵活转化a-c=a-b+b-c是解题的关键,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 160 | B. | 180 | C. | 200 | D. | 220 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | g(x)可能没有零点 | B. | g(x)可能有1个零点 | C. | g(x)可能有2个零点 | D. | g(x)可能有3个零点 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若数列{an}是公差为d的等差数列,则数列{$\frac{{S}_{n}}{n}$}的公差为$\frac{d}{2}$的等差数列 | |
| B. | 若数列{$\frac{{S}_{n}}{n}$}是公差为d的等差数列,则数列{an}是公差为2d的等差数列 | |
| C. | 若数列{an}是等差数列,则数列的奇数项,偶数项分别构成等差数列 | |
| D. | 若数列{an}的奇数项,偶数项分别构成公差相等的等差数列,则{an}是等差数列 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com