精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)的图象关于(1,1)对称,当x∈(0,1]时,f(x)=x2,当x∈(-1,0]时,f(x)+2=$\frac{2}{f(\sqrt{x+1})}$,若g(x)=f(x)-t(x+1)为定义在(-1,3)上的函数,则关于g(x)的零点个数的叙述中错误的是(  )
A.g(x)可能没有零点B.g(x)可能有1个零点C.g(x)可能有2个零点D.g(x)可能有3个零点

分析 求出f(x)在(-1,0]上的解析式,利用对称关系作出f(x)的函数图象,根据直线y=t(x+1)与f(x)的交点个数判断g(x)的零点个数.

解答 解:当x∈(-1,0]时,f(x)=-2+$\frac{2}{f(\sqrt{x+1})}$=-2+$\frac{2}{x+1}$,
根据f(x)的对称性作出f(x)在(-1,3)上的函数图象如图所示:

令g(x)=0得f(x)=t(x+1),
由图象可知直线y=t(x+1)与f(x)的图象最多有3个交点,最少有1个交点,
故g(x)的零点最少有1个最多有3个,
故选A.

点评 本题考查了函数解析式的求解,函数零点与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.如果一个n位十进制数$\overline{{a}_{1}{a}_{2…}{a}_{n}}$的数位上的数字满足“小大小大…小大”的顺序,即满足:a1<a2>a3<a4>a5<a6…,我们称这种数为“波浪数”;从1,2,3,4,5组成的数字不重复的五位数中任取一个五位数$\overline{abcde}$,这个数为“波浪数”的概率是(  )
A.$\frac{1}{10}$B.$\frac{2}{15}$C.$\frac{1}{5}$D.$\frac{4}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的上下焦点分别为F1,F2,离心率为$\frac{1}{2}$,P为C上动点,且满足$\overrightarrow{{F_2}P}=λ\overrightarrow{PQ}(λ>0),|\overrightarrow{PQ}|=|\overrightarrow{P{F_1}}$|,△QF1F2面积的最大值为4.
(Ⅰ)求Q点轨迹E的方程和椭圆C的方程;
(Ⅱ)直线y=kx+m(m>0)与椭圆C相切且与曲线E交于M,N两点,求${S_{△{F_{\;}}_1MN}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设a>b>c且$\frac{1}{a-b}+\frac{1}{b-c}≥\frac{m}{a-c}$恒成立,则m的取值范围是(-∞,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等比数列{an}的前n项和为Sn,公比为$\frac{3}{2}$.
(1)若${S_4}=\frac{65}{24}$,求a1
(2)若a1=2,${c_n}=\frac{1}{2}{a_n}+bn$,且c2,c4,c5成等差数列,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.向边长为1的正方形内随机投一粒豆子,则豆子到正方形的顶点A的距离不大于$\frac{1}{2}$的概率是(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{1}{π}$D.$\frac{π}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.cos(-375°)的值为(  )
A.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$B.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.$-\frac{{\sqrt{6}-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线a和平面α,则平面α内必有一直线与直线a垂直(从“相交,平行,异面,垂直”中选填).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设不等式组$\left\{{\begin{array}{l}{2x+y≥2}\\{x-2y≥-4}\\{3x-y≤3}\end{array}}\right.$所表示的平面区域为M,若函数y=k(x+1)+1的图象经过区域M,则实数k的取值范围是$[-\frac{1}{2},1]$.

查看答案和解析>>

同步练习册答案