精英家教网 > 高中数学 > 题目详情
19.如果一个n位十进制数$\overline{{a}_{1}{a}_{2…}{a}_{n}}$的数位上的数字满足“小大小大…小大”的顺序,即满足:a1<a2>a3<a4>a5<a6…,我们称这种数为“波浪数”;从1,2,3,4,5组成的数字不重复的五位数中任取一个五位数$\overline{abcde}$,这个数为“波浪数”的概率是(  )
A.$\frac{1}{10}$B.$\frac{2}{15}$C.$\frac{1}{5}$D.$\frac{4}{15}$

分析 根据题意,分析可得在“波浪数”中,十位数字,千位数字中必有一个是5、另一数是3或4;据此分2种情况讨论,分别求出每种情况下的“波浪数”的个数,由分类计数原理计算可得答案.

解答 解:根据题意,分析可得在“波浪数”中,十位数字,千位数字中必有一个是5、另一数是3或4;
另一数是4时,将5与4放在千位、十位上,有A22种情况,剩余的1、2、3放在其余三个数位上,有A33种情况,
则此时的“波浪数”有A22A33=12个;
另一数3时,4、5必须相邻,有45132;45231;13254;23154四个“波浪数”.
则由1,2,3,4,5可构成数字不重复的五位“波浪数”个数为12+4=16;
可得:这个数为“波浪数”的概率是$\frac{16}{5×4×3×2×1}$=$\frac{2}{15}$.
故选:B.

点评 本题考查排列组合及简单计数问题,解题的关键是理解“波浪数”的含义,进而转化为排列、组合问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.等比数列{an}的前n项和Sn=$\frac{1}{2}•{3^{n+1}}$+c(c为常数),若λan≤3+S2n恒成立,则实数λ的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合A={x|-1<x≤1},B={x|0<x≤2},则A∪B={x|-1<x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Asin(ωx+$\frac{π}{6}$)-1(A>0,ω>0)的部分图象如图,则对于区间[0,π]内的任意实数x1,x2,f(x1)-f(x2)的最大值为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某城市为了满足市民出行的需要和节能环保的要求,在公共场所提供单车共享服务,某部门为了对该城市共享单车进行监管,随机选取了20位市民对共享单车的情况进行问卷调查,并根据其满意度评分值(满分100分)制作的茎叶图如图所示:
(1)分别计算男性打分的平均数和女性打分的中位数;
(2)从打分在70分以下(不含70分)的市民中抽取3人,求有女性被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,三棱柱ABC-A1B1C1的底面是边长为2正三角形,D是A1C1的中点,且AA1⊥平面ABC,AA1=3.
(Ⅰ)求证:A1B∥平面B1DC;
(Ⅱ)求二面角D-B1C-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.边界在直线x=e,y=x及曲线$y=\frac{1}{x}$上的封闭的图形的面积为$\frac{{e}^{2}-3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.过点P(2,0)的直线交抛物线y2=4x于A,B两点,若抛物线的焦点为F,则△ABF面积的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)的图象关于(1,1)对称,当x∈(0,1]时,f(x)=x2,当x∈(-1,0]时,f(x)+2=$\frac{2}{f(\sqrt{x+1})}$,若g(x)=f(x)-t(x+1)为定义在(-1,3)上的函数,则关于g(x)的零点个数的叙述中错误的是(  )
A.g(x)可能没有零点B.g(x)可能有1个零点C.g(x)可能有2个零点D.g(x)可能有3个零点

查看答案和解析>>

同步练习册答案