精英家教网 > 高中数学 > 题目详情
11.边界在直线x=e,y=x及曲线$y=\frac{1}{x}$上的封闭的图形的面积为$\frac{{e}^{2}-3}{2}$.

分析 首先利用定积分表示封闭图形的面积,然后计算定积分.

解答 解:边界在直线x=e,y=x及曲线$y=\frac{1}{x}$上的封闭的图形的面积为${∫}_{1}^{e}(x-\frac{1}{x})dx$=($\frac{1}{2}{x}^{2}-lnx$)|${\;}_{1}^{e}$=$\frac{{{e^2}-3}}{2}$;
故答案为:$\frac{{e}^{2}-3}{2}$.

点评 本题考查了定积分的运用求曲边梯形的面积;正确利用定积分表示面积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若f(x)=ax2+x+$\frac{2}{x}$为奇函数,则f(x)在(0,+∞)上的最小值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}(1-x)|,x<1}\\{-{x}^{2}+4x-2,x≥1}\end{array}\right.$则方程f(x+$\frac{1}{x}$-2)=1的实根个数为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果一个n位十进制数$\overline{{a}_{1}{a}_{2…}{a}_{n}}$的数位上的数字满足“小大小大…小大”的顺序,即满足:a1<a2>a3<a4>a5<a6…,我们称这种数为“波浪数”;从1,2,3,4,5组成的数字不重复的五位数中任取一个五位数$\overline{abcde}$,这个数为“波浪数”的概率是(  )
A.$\frac{1}{10}$B.$\frac{2}{15}$C.$\frac{1}{5}$D.$\frac{4}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=x2-alnx-(a-2)x
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)有两个零点x1,x2,求满足条件的最小正整数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{3}$,cos$\frac{x}{3}$),$\overrightarrow{n}$=(cos$\frac{x}{3}$,cos$\frac{x}{3}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$
(Ⅰ)求函数f(x)的最小正周期和对称中心;
(Ⅱ)若a,b,c分别是△ABC内角A,B,C所对的边,且a=2,(2a-b)cosC=ccosB,f(A)=$\frac{3}{2}$,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)在函数y=x2-10x的图象上,等差数列{bn}满足bn+bn+1=an(n∈N*),其前n项和为Tn,则下列结论正确的是(  )
A.Sn<2TnB.b4=0C.T7>b7D.T5=T6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的上下焦点分别为F1,F2,离心率为$\frac{1}{2}$,P为C上动点,且满足$\overrightarrow{{F_2}P}=λ\overrightarrow{PQ}(λ>0),|\overrightarrow{PQ}|=|\overrightarrow{P{F_1}}$|,△QF1F2面积的最大值为4.
(Ⅰ)求Q点轨迹E的方程和椭圆C的方程;
(Ⅱ)直线y=kx+m(m>0)与椭圆C相切且与曲线E交于M,N两点,求${S_{△{F_{\;}}_1MN}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.cos(-375°)的值为(  )
A.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$B.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.$-\frac{{\sqrt{6}-\sqrt{2}}}{4}$

查看答案和解析>>

同步练习册答案