精英家教网 > 高中数学 > 题目详情
6.设函数f(x)=x2-alnx-(a-2)x
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)有两个零点x1,x2,求满足条件的最小正整数a的值.

分析 (Ⅰ)利用导数的运算法则即可得出f′(x),并对a分类讨论即可;
(Ⅱ)由(Ⅰ)的结论,结合根的存在性原理,可以判断存在a0∈(2,3),h(a0)=0,当a>a0,h(a)>0;

解答 解:(Ⅰ)$f'(x)=2x-(a-2)-\frac{a}{x}=\frac{{2{x^2}-(a-2)x-a}}{x}=\frac{(2x-a)(x+1)}{x}$.
当a≤0时,f′(x)>0在(0,+∞)上恒成立,
所以函数f(x)单调递增区间为(0,+∞),此时f(x)无单调减区间.
当a>0时,由f′(x)>0,得$x>\frac{a}{2}$,
由f′(x)<0,得0<x<$\frac{a}{2}$,得$0<x<\frac{a}{2}$,
所以函数的单调增区间为($\frac{a}{2}$,+∞),单调减区间为(0,$\frac{a}{2}$).
(Ⅱ)由(Ⅰ)可知函数f(x)有两个零点,
所以a>0,f(x)的最小值$f(\frac{a}{2})<0$,即-a2+4a-4aln$\frac{a}{2}$<0.
因为a>0,所以$a-4+4ln\frac{a}{2}>0$.
令h(a)=a-4+4ln$\frac{a}{2}$,显然h(a)在(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln$\frac{3}{2}$-1>0,
所以存在a0∈(2,3),h(a0)=0.
当a>a0时,h(a)>0;当0<a<a0时,h(a)<0,
所以满足条件的最小正整数a=3.
又当a=3时,F(3)=3(2-ln3)>0,F(1)=0,
所以a=3时,f(x)有两个零点.
综上所述,满足条件的最小正整数a的值为3.

点评 本题考查了利用导数求函数的单调区间以及根的存在性原理的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.双曲线W:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)一个焦点为F(2,0),若点F到W的渐近线的距离是1,则W的离心率为(  )
A.$\frac{4}{3}$B.$\frac{2\sqrt{3}}{3}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个封闭的正三棱柱容器,高为8,内装水若干(如图甲,底面处于水平状态).将容器放倒(如图乙,一个侧面处于水平状态),这时水面所在的平面与各棱交点E,F,F1,E1分别为所在棱的中点,则图甲中水面的高度为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某城市为了满足市民出行的需要和节能环保的要求,在公共场所提供单车共享服务,某部门为了对该城市共享单车进行监管,随机选取了20位市民对共享单车的情况进行问卷调查,并根据其满意度评分值(满分100分)制作的茎叶图如图所示:
(1)分别计算男性打分的平均数和女性打分的中位数;
(2)从打分在70分以下(不含70分)的市民中抽取3人,求有女性被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在直角梯形ABCD中AD∥BC.∠ABC=90°,AB=BC=2,DE=4,CE⊥AD于E,把△DEC沿CE折到D′EC的位置,使D′A=2$\sqrt{3}$.
(Ⅰ)求证:BE⊥平面AD′C;
(Ⅱ)求平面D′AB与平面D′CE的所夹的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.边界在直线x=e,y=x及曲线$y=\frac{1}{x}$上的封闭的图形的面积为$\frac{{e}^{2}-3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+2cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ
(Ⅰ)求曲线C1的普通方程和C2的直角坐标方程;
(Ⅱ)已知曲线C3的极坐标方程为θ=α,0<α<π,ρ∈R,点A是曲线C3与C1的交点,点B是曲线C3与C2的交点,且A,B均异于原点O,且|AB|=4$\sqrt{2}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的两个焦点,M(x0,y0)(x0>0,y0>0)是双曲线的渐近线上一点,满足MF1⊥MF2,如果以F2为焦点的抛物线y2=2px(p>0)经过点M,则此双曲线的离心率为(  )
A.$2+\sqrt{3}$B.$2-\sqrt{3}$C.$2+\sqrt{5}$D.$\sqrt{5}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,已知底面ABCD是正方形的四棱柱ABCD-A1B1C1D1,C1C=C1D,且∠C1CB=C1CD,线段AC与BD的交点为O.
(1)求证:C1O⊥平面ABCD;
(2)若C1O=CO,设点E在线段AD上,且满足$\overrightarrow{AE}$=λ$\overrightarrow{ED}$,当λ为何值时,二面角D1-OE-A的余弦值为$\frac{\sqrt{6}}{6}$?

查看答案和解析>>

同步练习册答案