18£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+2cos¦Õ}\\{y=2sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4sin¦È
£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌºÍC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÒÑÖªÇúÏßC3µÄ¼«×ø±ê·½³ÌΪ¦È=¦Á£¬0£¼¦Á£¼¦Ð£¬¦Ñ¡ÊR£¬µãAÊÇÇúÏßC3ÓëC1µÄ½»µã£¬µãBÊÇÇúÏßC3ÓëC2µÄ½»µã£¬ÇÒA£¬B¾ùÒìÓÚÔ­µãO£¬ÇÒ|AB|=4$\sqrt{2}$£¬ÇóʵÊýaµÄÖµ£®

·ÖÎö £¨¢ñ£©ÓÉÇúÏßC1µÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýÄÜÇó³öÇúÏßC1µÄÆÕͨ·½³Ì£»ÇúÏßC2µÄ¼«×ø±ê·½³Ì»¯Îª¦Ñ2=4¦Ñsin¦È£¬ÓÉ´ËÄÜÇó³öC2µÄÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©ÇúÏßC1»¯Îª¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£¬ÉèA£¨¦Ñ1£¬¦Á1£©£¬B£¨¦Ñ2£¬¦Á2£©£¬´Ó¶øµÃµ½|AB|=|¦Ñ1-¦Ñ2|=|4sin¦Á-4cos¦Á|=4$\sqrt{2}$|sin£¨$¦Á-\frac{¦Ð}{4}$£©|=4$\sqrt{2}$£¬½ø¶øsin£¨$¦Á-\frac{¦Ð}{4}$£©=¡À1£¬ÓÉ´ËÄÜÇó³ö½á¹û£®

½â´ð ½â£º£¨¢ñ£©ÓÉÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+2cos¦Õ}\\{y=2sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬
ÏûÈ¥²ÎÊýµÃÇúÏßC1µÄÆÕͨ·½³ÌΪ£¨x-2£©2+y2=4£®
¡ßÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4sin¦È£¬
¡à¦Ñ2=4¦Ñsin¦È£¬
¡àC2µÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=4y£¬ÕûÀí£¬µÃx2+£¨y-2£©2=4£®
£¨¢ò£©ÇúÏßC1£º£¨x-2£©2+y2=4»¯Îª¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£¬
ÉèA£¨¦Ñ1£¬¦Á1£©£¬B£¨¦Ñ2£¬¦Á2£©£¬
¡ßÇúÏßC3µÄ¼«×ø±ê·½³ÌΪ¦È=¦Á£¬0£¼¦Á£¼¦Ð£¬¦Ñ¡ÊR£¬µãAÊÇÇúÏßC3ÓëC1µÄ½»µã£¬
µãBÊÇÇúÏßC3ÓëC2µÄ½»µã£¬ÇÒA£¬B¾ùÒìÓÚÔ­µãO£¬ÇÒ|AB|=4$\sqrt{2}$£¬
¡à|AB|=|¦Ñ1-¦Ñ2|=|4sin¦Á-4cos¦Á|=4$\sqrt{2}$|sin£¨$¦Á-\frac{¦Ð}{4}$£©|=4$\sqrt{2}$£¬
¡àsin£¨$¦Á-\frac{¦Ð}{4}$£©=¡À1£¬
¡ß0£¼¦Á£¼¦Ð£¬¡à$-\frac{¦Ð}{4}£¼¦Á£¼\frac{3¦Ð}{4}$£¬
¡à$¦Á-\frac{¦Ð}{4}=\frac{¦Ð}{2}$£¬½âµÃ$¦Á=\frac{3¦Ð}{4}$£®

µãÆÀ ±¾Ì⿼²éÇúÏߵįÕͨ·½³Ì¡¢Ö±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²é½ÇµÄÇ󷨣¬Éæ¼°µ½Ö±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖª¹«±È²»Îª1µÄµÈ±ÈÊýÁÐ{an}µÄǰ3Ïî»ýΪ27£¬ÇÒ2a2Ϊ3a1ºÍa3µÄµÈ²îÖÐÏ
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãbn=bn-1•log3an+1£¨n¡Ý2£¬n¡ÊN*£©£¬ÇÒb1=1£¬ÇóÊýÁÐ{$\frac{{b}_{n}}{{b}_{n+2}}$}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®½¹µãÔÚyÖáÉϵÄË«ÇúÏßµÄÒ»Ìõ½¥½üÏß·½³ÌΪ$y=\frac{3}{4}x$£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{5}{3}$B£®$\frac{5}{4}$C£®$\frac{4}{3}$D£®$\frac{3\sqrt{7}}{7}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®É躯Êýf£¨x£©=x2-alnx-£¨a-2£©x
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©Èôº¯Êýf£¨x£©ÓÐÁ½¸öÁãµãx1£¬x2£¬ÇóÂú×ãÌõ¼þµÄ×îСÕýÕûÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ö´ÐÐÓÒÃæµÄ³ÌÐò¿òͼ£¬ÔòÊä³öµÄB=£¨¡¡¡¡£©
A£®31B£®63C£®127D£®255

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬µã£¨n£¬Sn£©£¨n¡ÊN*£©ÔÚº¯Êýy=x2-10xµÄͼÏóÉÏ£¬µÈ²îÊýÁÐ{bn}Âú×ãbn+bn+1=an£¨n¡ÊN*£©£¬ÆäǰnÏîºÍΪTn£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Sn£¼2TnB£®b4=0C£®T7£¾b7D£®T5=T6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®É踴ÊýzµÄ¹²éÊýΪ$\overline z$£¬Âú×ãz+$\overline z=z•\overline z=2$£¬Ôò${£¨{\frac{\overline z}{z}}£©^{2017}}$=£¨¡¡¡¡£©
A£®¡ÀiB£®iC£®-iD£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®¸´ÊýzÂú×ã$\frac{1+i}{z}=\frac{i}{1+2i}£¨i$ΪÐéÊýµ¥Î»£©£¬Ôòz=£¨¡¡¡¡£©
A£®3+iB£®3-iC£®-3+iD£®-3-i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®º½¿Õ²âÁ¿×éµÄ·É»úº½ÏߺÍɽ¶¥ÔÚÍ¬Ò»Ç¦Ö±Æ½ÃæÄÚ£¬ÒÑÖª·É»úµÄ¸ß¶ÈΪº£°Î10ǧÃ×£¬ËÙ¶ÈΪ180ǧÃ×/Сʱ£¬·É»úÏÈ¿´µ½É½¶¥µÄ¸©½ÇΪ15¡ã£¬¾­¹ý420ÃëºóÓÖ¿´µ½É½¶¥µÄ¸©½ÇΪ45¡ã£¬Ôòɽ¶¥µÄº£°Î¸ß¶ÈΪ£¨È¡$\sqrt{2}=1.4$£¬$\sqrt{3}=1.7$£©£¨¡¡¡¡£©
A£®2.65ǧÃ×B£®7.35ǧÃ×C£®10ǧÃ×D£®10.5ǧÃ×

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸