精英家教网 > 高中数学 > 题目详情
15.已知F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的两个焦点,M(x0,y0)(x0>0,y0>0)是双曲线的渐近线上一点,满足MF1⊥MF2,如果以F2为焦点的抛物线y2=2px(p>0)经过点M,则此双曲线的离心率为(  )
A.$2+\sqrt{3}$B.$2-\sqrt{3}$C.$2+\sqrt{5}$D.$\sqrt{5}-2$

分析 设M(x0,y0),F1(-c,0),F2(c,0),由MF1⊥MF2以及点M(x0,y0)在直线$y=\frac{b}{a}x$上,列出方程,根据抛物线的定义可知$|{M{F_2}}|={x_0}+\frac{p}{2}=a+c$,然后最后求解双曲线的离心率即可.

解答 解:设M(x0,y0),F1(-c,0),F2(c,0),由MF1⊥MF2可知$|{OM}|=\frac{1}{2}|{{F_1}{F_2}}|=c$,
又点M(x0,y0)在直线$y=\frac{b}{a}x$上,所以$\left\{\begin{array}{l}{y_0}=\frac{b}{a}{x_0}\\{x_0}^2+{y_0}^2={c^2}\end{array}\right.$
解得$\left\{\begin{array}{l}{x_0}=a\\{y_0}=b\end{array}\right.$,于是根据抛物线的定义可知$|{M{F_2}}|={x_0}+\frac{p}{2}=a+c$,
所以$\sqrt{{{(a-c)}^2}+{b^2}}=a+c$,即c2-4ac-a2=0,e2-4e-1=0,$e=\frac{c}{a}=2+\sqrt{5}$,
则双曲线的离心率为$2+\sqrt{5}$.
故选:C.

点评 本题考查抛物线以及双曲线的简单性质的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.“m=-1”是“直线l1:mx+(2m-1)y+1=0与直线l2:3x+my+3=0垂直”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=x2-alnx-(a-2)x
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)有两个零点x1,x2,求满足条件的最小正整数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)在函数y=x2-10x的图象上,等差数列{bn}满足bn+bn+1=an(n∈N*),其前n项和为Tn,则下列结论正确的是(  )
A.Sn<2TnB.b4=0C.T7>b7D.T5=T6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设复数z的共轭复数为$\overline z$,满足z+$\overline z=z•\overline z=2$,则${({\frac{\overline z}{z}})^{2017}}$=(  )
A.±iB.iC.-iD.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的上下焦点分别为F1,F2,离心率为$\frac{1}{2}$,P为C上动点,且满足$\overrightarrow{{F_2}P}=λ\overrightarrow{PQ}(λ>0),|\overrightarrow{PQ}|=|\overrightarrow{P{F_1}}$|,△QF1F2面积的最大值为4.
(Ⅰ)求Q点轨迹E的方程和椭圆C的方程;
(Ⅱ)直线y=kx+m(m>0)与椭圆C相切且与曲线E交于M,N两点,求${S_{△{F_{\;}}_1MN}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数z满足$\frac{1+i}{z}=\frac{i}{1+2i}(i$为虚数单位),则z=(  )
A.3+iB.3-iC.-3+iD.-3-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等比数列{an}的前n项和为Sn,公比为$\frac{3}{2}$.
(1)若${S_4}=\frac{65}{24}$,求a1
(2)若a1=2,${c_n}=\frac{1}{2}{a_n}+bn$,且c2,c4,c5成等差数列,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow a$,$\overrightarrow{b}$为两个互相垂直的单位向量,向量$\overrightarrow c$满足$(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-2\overrightarrow c)$=0,则$|\overrightarrow c{|_{max}}$=$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

同步练习册答案