精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow a$,$\overrightarrow{b}$为两个互相垂直的单位向量,向量$\overrightarrow c$满足$(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-2\overrightarrow c)$=0,则$|\overrightarrow c{|_{max}}$=$\frac{\sqrt{5}}{2}$.

分析 设$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为θ,则$\overrightarrow{b}$与$\overrightarrow{c}$的夹角为$\frac{π}{2}$+θ,设|$\overrightarrow{c}$|=x,根据题意可得x=$\frac{\sqrt{5}}{2}$cos(θ+φ),利用三角函数的性质即可求出最大值

解答 解:∵向量$\overrightarrow a$,$\overrightarrow{b}$为两个互相垂直的单位向量,
设$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为θ,则$\overrightarrow{b}$与$\overrightarrow{c}$的夹角为$\frac{π}{2}$+θ,设|$\overrightarrow{c}$|=x,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=0,
∴$\overrightarrow{a}$•$\overrightarrow{c}$=|$\overrightarrow{a}$|•|$\overrightarrow{c}$|=xcosθ,$\overrightarrow{b}$•$\overrightarrow{c}$=|$\overrightarrow{b}$|•|$\overrightarrow{c}$|=xcos(θ+$\frac{π}{2}$)=-xsinθ,
∵$(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-2\overrightarrow c)$=0
∴$\overrightarrow{a}$•$\overrightarrow{b}$-2$\overrightarrow{a}$$•\overrightarrow{c}$-$\overrightarrow{b}$•$\overrightarrow{c}$+2${\overrightarrow{c}}^{2}$=2x2-2xcosθ+xsinθ=0,
∴x=cosθ-$\frac{1}{2}$sinθ=$\frac{\sqrt{5}}{2}$cos(θ+φ),其中cosφ=$\frac{2\sqrt{5}}{5}$,sinφ=$\frac{\sqrt{5}}{5}$,
∴0≤x≤$\frac{\sqrt{5}}{2}$,
若设$\overrightarrow{b}$与$\overrightarrow{c}$的夹角为$\frac{π}{2}$-θ,
同理可得0≤x≤$\frac{\sqrt{5}}{2}$,
故$|\overrightarrow c{|_{max}}$=$\frac{{\sqrt{5}}}{2}$,
故答案为:$\frac{\sqrt{5}}{2}$.

点评 本题考查了向量的数量积公式和三角函数的图象和性质,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的两个焦点,M(x0,y0)(x0>0,y0>0)是双曲线的渐近线上一点,满足MF1⊥MF2,如果以F2为焦点的抛物线y2=2px(p>0)经过点M,则此双曲线的离心率为(  )
A.$2+\sqrt{3}$B.$2-\sqrt{3}$C.$2+\sqrt{5}$D.$\sqrt{5}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,已知底面ABCD是正方形的四棱柱ABCD-A1B1C1D1,C1C=C1D,且∠C1CB=C1CD,线段AC与BD的交点为O.
(1)求证:C1O⊥平面ABCD;
(2)若C1O=CO,设点E在线段AD上,且满足$\overrightarrow{AE}$=λ$\overrightarrow{ED}$,当λ为何值时,二面角D1-OE-A的余弦值为$\frac{\sqrt{6}}{6}$?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.有4个不同的球,四个不同的盒子,把球全部放入盒内,恰有两个盒不放球,共有(  )种放法.
A.114B.96C.84D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设全集U={1,2,3,4,5},∁U(A∪B)={1},A∩(∁UB)={3,4},则集合B=(  )
A.{1,2,4,5}B.{2,4,5}C.{1,2,5}D.{2,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得出这个几何体的内切球半径是(  )
A.$\frac{4}{3}$B.$\frac{4}{9}$C.$\sqrt{6}-2$D.$3\sqrt{6}-6$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)是定义在R上的函数,且满足①f(4)=0;②曲线y=f(x+1)关于点(-1,0)对称;③当x∈(-4,0)时f(x)=log2($\frac{x}{{e}^{|x|}}$+ex-m+1),若y=f(x)在x∈[-4,4]上有5个零点,则实数m的取值范围为(  )
A.[-3e-4,1)B.[-3e-4,1)∪{-e-2}C.[0,1)∪{-e-2}D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知实数x,y满足的约束条件$\left\{\begin{array}{l}x-2y+2≥0\\ 3x-2y-3≤0\\ x+y-1≥0\end{array}\right.$,表示的平面区域为D,若存在点P(x,y)∈D,使x2+y2≥m成立,则实数m的最大值为$\frac{181}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过点(0,-2),F1,F2分别是其左、右焦点,O为坐标原点,点P是椭圆上一点,PF1⊥x轴,且△OPF1的面积为$\sqrt{2}$,
(1)求椭圆E的离心率和方程;
(2)设A,B是椭圆上两动点,若直线AB的斜率为$-\frac{1}{4}$,求△OAB面积的最大值.

查看答案和解析>>

同步练习册答案