精英家教网 > 高中数学 > 题目详情
8.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过点(0,-2),F1,F2分别是其左、右焦点,O为坐标原点,点P是椭圆上一点,PF1⊥x轴,且△OPF1的面积为$\sqrt{2}$,
(1)求椭圆E的离心率和方程;
(2)设A,B是椭圆上两动点,若直线AB的斜率为$-\frac{1}{4}$,求△OAB面积的最大值.

分析 (1)由题意可得:b=2.由PF1⊥x轴,把x=c代入题意可得:$\frac{{c}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,解得y=$±\frac{{b}^{2}}{a}$.可得$\frac{1}{2}×c×\frac{{b}^{2}}{a}$=$\sqrt{2}$,可得:$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$=e,又a2=b2+c2,联立解得a2,c.即可得出.
(2)设直线AB的方程为:y=-$\frac{1}{4}$x+t,与椭圆方程联立可得:9x2-8tx+16t2-64=0.△>0,利用根与系数的关系可得:|AB|=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$.点O到直线AB的距离d=$\frac{4|t|}{\sqrt{17}}$.可得S△OAB=$\frac{1}{2}$|AB|•d,利用基本不等式的性质即可得出.

解答 解:(1)由题意可得:b=2.由PF1⊥x轴,把x=c代入题意可得:$\frac{{c}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,解得y=$±\frac{{b}^{2}}{a}$.
∵△OPF1的面积为$\sqrt{2}$,∴$\frac{1}{2}×c×\frac{{b}^{2}}{a}$=$\sqrt{2}$,可得:$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$=e,又a2=b2+c2
联立解得a2=8,c=2.
∴椭圆E的方程为:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1.
(2)设直线AB的方程为:y=-$\frac{1}{4}$x+t,与椭圆方程联立可得:9x2-8tx+16t2-64=0.
△=64t2-36(16t2-64)>0,解得$-\frac{3\sqrt{2}}{2}$<t<$\frac{3\sqrt{2}}{2}$.
∴x1+x2=$\frac{8t}{9}$,x1•x2=$\frac{16{t}^{2}-64}{9}$,
∴|AB|=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+\frac{1}{16}}$•$\sqrt{\frac{64{t}^{2}}{81}-\frac{4}{9}(16{t}^{2}-64)}$=$\frac{4\sqrt{17}}{9}$$\sqrt{9-2{t}^{2}}$.
点O到直线AB的距离d=$\frac{4|t|}{\sqrt{17}}$.
∴S△OAB=$\frac{1}{2}$|AB|•d=$\frac{8}{9\sqrt{2}}$$\sqrt{2{t}^{2}(9-2{t}^{2})}$≤$\frac{8}{9\sqrt{2}}$×$\frac{2{t}^{2}+9-2{t}^{2}}{2}$=2$\sqrt{2}$.当且仅当t=$±\frac{3}{2}$时取等号,满足△>0.
∴△OAB面积的最大值为2$\sqrt{2}$.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、一元二次方程的根与系数的关系、点到直线的距离公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow a$,$\overrightarrow{b}$为两个互相垂直的单位向量,向量$\overrightarrow c$满足$(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-2\overrightarrow c)$=0,则$|\overrightarrow c{|_{max}}$=$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若命题“x∈{x|x2-5x+4>0}”是假命题,则x的取值范围是1≤x≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A,B均为钝角,且sinA=$\frac{{\sqrt{5}}}{5},sinB=\frac{{\sqrt{10}}}{10}$,求A+B的值为$\frac{7π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若实数x,y满足条件$\left\{\begin{array}{l}2x-y+1≥0\\ 2x+y-5≥0\\ x-2≤0\end{array}\right.$,则$z=\frac{4x}{3x+2y}$的最大值为(  )
A.1B.$\frac{64}{15}$C.$\frac{16}{19}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$P:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点为F(1,0),且经过点$({\frac{2}{3},\frac{{2\sqrt{6}}}{3}})$
(1)求椭圆P的方程;
(2)已知正方形ABCD的顶点A,C在椭圆P上,顶点B,D在直线7x-7y+1=0上,求该正方形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,过椭圆上一点M作直线MA,MB交椭圆于A,B两点,且斜率分别为k1,k2,若点A,B关于原点对称,则k1•k2的值为-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{lnx+ax+1}{x}$.
(1)若对任意x>0,f(x)<0恒成立,求实数a的取值范围;
(2)若函数f(x)有两个不同的零点x1,x2(x1<x2),证明:x12+x22>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=x+2y的最大值与最小值的差为(  )
A.3B.4C.7D.10

查看答案和解析>>

同步练习册答案