精英家教网 > 高中数学 > 题目详情
6.有4个不同的球,四个不同的盒子,把球全部放入盒内,恰有两个盒不放球,共有(  )种放法.
A.114B.96C.84D.48

分析 四个不同的球全部放入4个不同的盒子内,恰有两个盒子不放球的不同放法的求法,分为两步来求解,先把四个球分为两组,再取两个盒子,作全排列,由于四个球分两组有两种分法,一种是2,2,另一种是3,1,故此题分为两类来求解,再求出它们的和,然后选出正确选项

解答 解:四个球分为两组有两种分法,(2,2),(3,1),
若两组每组有两个球,不同的分法有$\frac{{C}_{4}^{2}}{{A}_{2}^{2}}$=3种,恰有两个盒子不放球的不同放法是3×A42=36种,
若两组一组为3,一组为1个球,不同分法有C43=4种恰有两个盒子不放球的不同放法是4×A42=48种,
综上恰有两个盒子不放球的不同放法是36+48=84种,
故选:C.

点评 本题考查察排列、组合的实际应用,解题的关键是理解事件“四个不同的球全部放入4个不同的盒子内,恰有两个盒子不放球”,宜先将四个球分为两组,再放入,分步求不同的放法种数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)在函数y=x2-10x的图象上,等差数列{bn}满足bn+bn+1=an(n∈N*),其前n项和为Tn,则下列结论正确的是(  )
A.Sn<2TnB.b4=0C.T7>b7D.T5=T6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等比数列{an}的前n项和为Sn,公比为$\frac{3}{2}$.
(1)若${S_4}=\frac{65}{24}$,求a1
(2)若a1=2,${c_n}=\frac{1}{2}{a_n}+bn$,且c2,c4,c5成等差数列,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.cos(-375°)的值为(  )
A.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$B.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.$-\frac{{\sqrt{6}-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的高度为海拔10千米,速度为180千米/小时,飞机先看到山顶的俯角为15°,经过420秒后又看到山顶的俯角为45°,则山顶的海拔高度为(取$\sqrt{2}=1.4$,$\sqrt{3}=1.7$)(  )
A.2.65千米B.7.35千米C.10千米D.10.5千米

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线a和平面α,则平面α内必有一直线与直线a垂直(从“相交,平行,异面,垂直”中选填).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow a$,$\overrightarrow{b}$为两个互相垂直的单位向量,向量$\overrightarrow c$满足$(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-2\overrightarrow c)$=0,则$|\overrightarrow c{|_{max}}$=$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知一个几何体的三视图如图所示(单位:cm).则该几何体的体积为8πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A,B均为钝角,且sinA=$\frac{{\sqrt{5}}}{5},sinB=\frac{{\sqrt{10}}}{10}$,求A+B的值为$\frac{7π}{4}$.

查看答案和解析>>

同步练习册答案