精英家教网 > 高中数学 > 题目详情
3.如图,当甲船位于A处时获悉,在其正东方向相距10海里的B处有个艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°,相距6海里的C处的乙船,乙船立即朝北偏东(θ+30°)的方向沿直线前往B处营救,则sinθ的值为$\frac{5\sqrt{3}}{14}$.

分析 连结BC,先用余弦定理计算BC,再利用正弦定理计算sinC即可.

解答 解:连结BC,由已知得AC=6,AB=10,∠BAC=120°,
由余弦定理得BC2=AB2+AC2-2•AB•AC•cos120°=100+36-2•10•6•(-$\frac{1}{2}$)=196,
∴BC=14,
由正弦定理得$\frac{AB}{sinC}=\frac{BC}{sin∠BAC}$,即$\frac{10}{sinC}=\frac{14}{\frac{\sqrt{3}}{2}}$,解得sinC=$\frac{5\sqrt{3}}{14}$,
∴sinθ=$\frac{5\sqrt{3}}{14}$.
故答案为:$\frac{5\sqrt{3}}{14}$.

点评 本题考查了解三角形的实际应用,正余弦定理在解三角形中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知椭圆$P:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点为F(1,0),且经过点$({\frac{2}{3},\frac{{2\sqrt{6}}}{3}})$
(1)求椭圆P的方程;
(2)已知正方形ABCD的顶点A,C在椭圆P上,顶点B,D在直线7x-7y+1=0上,求该正方形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}和{bn}满足:${a_{n+k}}-{({-1})^k}•{a_n}={b_n}(n∈{N^*})$.
(1)若$k=1,{a_1}=1,{b_n}={2^n}$,求数列{an}的通项公式;
(2)若k=4,bn=8,a1=4,a2=6,a3=8,a4=10.
①求证:数列{an}为等差数列;
②记数列{an}的前n项和为Sn,求满足${({{S_n}+1})^2}-\frac{3}{2}{a_n}+33={k^2}$的所有正整数k和n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC的内角A,B,C对边分别为a,b,c,若满足$\frac{2c-b}{a}$=$\frac{cosB}{cosA}$,且$a=2\sqrt{5}$,则△ABC面积的最大值5$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=x+2y的最大值与最小值的差为(  )
A.3B.4C.7D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,且△PAD是边长为2的等边三角形,$PC=\sqrt{13}$,点M是PC的中点.
(I)求证:PA∥平面MBD;
(II)求四面体P-BDM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点P($\sqrt{3}$,1)且离心率为$\frac{\sqrt{6}}{3}$,F为椭圆的右焦点,过F的直线交椭圆C于M,N两点,定点A(-4,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若△AMN面积为3$\sqrt{3}$,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=sin($\frac{x}{4}$-$\frac{π}{3}$),若存在实数x1,x2使得对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值是(  )
A.B.C.D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.化简:
(1)sin(-α)cos(-α-π)tan(2π+α);
(2)$\frac{sin(180°+α)cos(-α)}{tan(-α)}$;
(3)$\frac{cos(α+π)sin(-α)}{cos(-3π-α)sin(-α-4π)}$;
(4)sin2(-α)+tan(2π+α)cos2(π+α).

查看答案和解析>>

同步练习册答案