精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=sin($\frac{x}{4}$-$\frac{π}{3}$),若存在实数x1,x2使得对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值是(  )
A.B.C.D.π

分析 由题意利用函数y=Asin(ωx+φ)的图象和性质,正弦函数的周期性,求得|x1-x2|的最小值.

解答 解:∵函数f(x)=sin($\frac{x}{4}$-$\frac{π}{3}$),若存在实数x1,x2使得对任意实数x,都有f(x1)≤f(x)≤f(x2),
则f(x1)是f(x值)的最小值,且f(x2)是f(x值)的最大值,
则|x1-x2|的最小值是半个周期,为$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{π}{\frac{1}{4}}$=4π,
故选:B.

点评 本题主要考查函数y=Asin(ωx+φ)的图象和性质,正弦函数的周期性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知动点P到双曲线${x^2}-\frac{y^2}{2}=1$的左、右焦点F1、F2的距离之和为4.
(Ⅰ)求动点P的轨迹E的标准方程;
(Ⅱ)若过点F1的直线l交轨迹E于A,B两个不同的点,试问:在x轴上能否存在一个定点M,使得$\overrightarrow{AM}•\overrightarrow{BM}$为定值λ?若存在,请求出定点M与定值λ;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,当甲船位于A处时获悉,在其正东方向相距10海里的B处有个艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°,相距6海里的C处的乙船,乙船立即朝北偏东(θ+30°)的方向沿直线前往B处营救,则sinθ的值为$\frac{5\sqrt{3}}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知复数z满足z=$\frac{5+2i}{2-5i}$(i是虚数单位),则z2017=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在四棱锥C-ABDE中,DB⊥平面ABC,AE∥DB,△ABC是边长为2的等边三角形,AE=1,M为AB的中点.
(1)求证:CM⊥EM;
(2)若直线DM与平面ABC所成角的正切值为2,求二面角B-CD-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥P-ABCD中,底面ABCD是菱形,$∠BAD=\frac{π}{3}$,PA=PD,F为AD的中点,PD⊥BF.
(1)求证:AD⊥PB;
(2)若菱形ABCD的边长为6,PA=5,求四面体PBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.数列{an}的前n项和为Sn,满足a1=1,${2^{{a_{n+1}}}}=2•{4^{a_n}}$,则S5的值为(  )
A.57B.58C.62D.63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)是定义在[m,n]上的函数,记F(x)=f(x)-(ax+b),|F(x)|的最大值为M(a,b).若存在m≤x1<x2<x3≤n,满足|F(x1)|=M(a,b),F(x2)=-F(x1).F(x3)=F(x1),则称一次函数y=ax+b是f(x)的“逼近函数”,此时的M(a,b)称为f(x)在[m,n]上的“逼近确界”.
(1)验证:y=4x-1是g(x)=2x2,x∈[0,2]的“逼近函数”;
(2)已知f(x)=$\sqrt{x}$,x∈[0,4],F(0)=F(4)=-M(a,b).若y=ax+b是f(x)的“逼近函数”,求a,b的值;
(3)已知f(x)=$\sqrt{x}$,x∈[0,4]的逼近确界为$\frac{1}{4}$,求证:对任意常数a,b,M(a,b)≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知随机变量X~B(9,$\frac{2}{3}$),Y=2X-1,则D(Y)=8.

查看答案和解析>>

同步练习册答案