精英家教网 > 高中数学 > 题目详情
2.已知动点P到双曲线${x^2}-\frac{y^2}{2}=1$的左、右焦点F1、F2的距离之和为4.
(Ⅰ)求动点P的轨迹E的标准方程;
(Ⅱ)若过点F1的直线l交轨迹E于A,B两个不同的点,试问:在x轴上能否存在一个定点M,使得$\overrightarrow{AM}•\overrightarrow{BM}$为定值λ?若存在,请求出定点M与定值λ;若不存在,请说明理由.

分析 (Ⅰ)由双曲线方程求出焦点坐标,再由动点P到F1、F2的距离之和为4,结合椭圆定义可得动点P的轨迹E是以
F1、F2为焦点,以4为长轴长的椭圆,则动点P的轨迹E的标准方程可求;
(Ⅱ)当直线l的斜率存在时,可设直线l的方程为$y=k(x+\sqrt{3})$,A(x1,y1),B(x2,y2),M(m,0).联立直线方程与椭圆方程,利用根与系数的关系求得A,B横坐标的和与积,结合$\overrightarrow{AM}•\overrightarrow{BM}$为定值λ,得$(4{m}^{2}+8\sqrt{3}m+11-4λ){k}^{2}+{m}^{2}-4-λ=0$对任意k∈R均成立.得到$\left\{{\begin{array}{l}{4{m^2}+8\sqrt{3}m+11-4λ=0}\\{{m^2}-4-λ=0}\end{array}}\right.$,解得m与λ的值,可得当直线l的斜率存在时,存在定点$M(-\frac{{9\sqrt{3}}}{8},0)$满足条件,此时定值$λ=-\frac{13}{64}$;当直线l的斜率不存在时,直线l的方程为:$x=-\sqrt{3}$.联立直线方程与椭圆方程,解得A,B的坐标,对于定点$M(-\frac{{9\sqrt{3}}}{8},0)$,满足$\overrightarrow{AM}•\overrightarrow{BM}$=$-\frac{13}{64}$.可得存在定点$M(-\frac{{9\sqrt{3}}}{8},0)$满足条件,此时定值$λ=-\frac{13}{64}$.

解答 解:(Ⅰ)∵F1、F2是双曲线${x^2}-\frac{y^2}{2}=1$的左、右焦点,
∴${F_1}(-\sqrt{3},0)$,${F_2}(\sqrt{3},0)$,
∵动点P到F1、F2的距离之和为4,
∴动点P的轨迹E是以F1、F2为焦点,以4为长轴长的椭圆,
∴动点P的轨迹E的标准方程为:$\frac{x^2}{4}+{y^2}=1$;
(Ⅱ)①当直线l的斜率存在时,
可设直线l的方程为$y=k(x+\sqrt{3})$,A(x1,y1),B(x2,y2),M(m,0).
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=k(x+\sqrt{3})}\end{array}\right.$,得$(4{k}^{2}+1){x}^{2}+8\sqrt{3}{k}^{2}x+12{k}^{2}-4=0$.
∴${x_1}+{x_2}=-\frac{{8\sqrt{3}{k^2}}}{{4{k^2}+1}}$,${x_1}{x_2}=\frac{{12{k^2}-4}}{{4{k^2}+1}}$.
$\overrightarrow{AM}•\overrightarrow{BM}=(m-{x_1},-{y_1})•(m-{x_2},-{y_2})$=(m-x1)(m-x2)+y1y2
=$(m-{x_1})(m-{x_2})+{k^2}({x_1}+\sqrt{3})({x_2}+\sqrt{3})$
=$({k^2}+1){x_1}{x_2}+(\sqrt{3}{k^2}-m)({x_1}+{x_2})+3{k^2}+{m^2}$
=$({k^2}+1)×\frac{{12{k^2}-4}}{{4{k^2}+1}}+(\sqrt{3}{k^2}-m)(-\frac{{8\sqrt{3}{k^2}}}{{4{k^2}+1}})+3{k^2}+{m^2}$
=$\frac{{(4{m^2}+8\sqrt{3}m+11){k^2}+{m^2}-4}}{{4{k^2}+1}}$.
由$\overrightarrow{AM}•\overrightarrow{BM}=λ$,得$\frac{(4{m}^{2}+8\sqrt{3}m+11){k}^{2}+{m}^{2}-4}{4{k}^{2}+1}=λ$,
∴$(4{m}^{2}+8\sqrt{3}m+11-4λ){k}^{2}+{m}^{2}-4-λ=0$对任意k∈R均成立.
∴$\left\{{\begin{array}{l}{4{m^2}+8\sqrt{3}m+11-4λ=0}\\{{m^2}-4-λ=0}\end{array}}\right.$,解得$m=-\frac{9\sqrt{3}}{8},λ=-\frac{13}{64}$.
∴当直线l的斜率存在时,存在定点$M(-\frac{{9\sqrt{3}}}{8},0)$满足条件,此时定值$λ=-\frac{13}{64}$;
②当直线l的斜率不存在时,直线l的方程为:$x=-\sqrt{3}$.
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{x=-\sqrt{3}}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-\sqrt{3}}\\{y=\frac{1}{2}}\end{array}\right.$或$\left\{{\begin{array}{l}{x=-\sqrt{3}}\\{y=-\frac{1}{2}}\end{array}}\right.$.
不妨取$A(-\sqrt{3},-\frac{1}{2}),B(-\sqrt{3},\frac{1}{2})$.
对于定点$M(-\frac{{9\sqrt{3}}}{8},0)$,则$\overrightarrow{AM}•\overrightarrow{BM}=(-\frac{{9\sqrt{3}}}{8}+\sqrt{3},\frac{1}{2})•(-\frac{{9\sqrt{3}}}{8}+\sqrt{3},-\frac{1}{2})=-\frac{13}{64}$.
∴当直线l的斜率不存在时,定点$M(-\frac{{9\sqrt{3}}}{8},0)$也满足条件,此时定值$λ=-\frac{13}{64}$.
综上可知:存在定点$M(-\frac{{9\sqrt{3}}}{8},0)$满足条件,此时定值$λ=-\frac{13}{64}$.

点评 本题考查双曲线标准方程的求法,考查了双曲线的简单性质,考查直线与双曲线位置关系的应用,体现了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设不等式组$\left\{{\begin{array}{l}{2x+y≥2}\\{x-2y≥-4}\\{3x-y≤3}\end{array}}\right.$所表示的平面区域为M,若函数y=k(x+1)+1的图象经过区域M,则实数k的取值范围是$[-\frac{1}{2},1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$P:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点为F(1,0),且经过点$({\frac{2}{3},\frac{{2\sqrt{6}}}{3}})$
(1)求椭圆P的方程;
(2)已知正方形ABCD的顶点A,C在椭圆P上,顶点B,D在直线7x-7y+1=0上,求该正方形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线E:x2=4y的焦点为F,过点F的直线l交抛物线于A,B两点.
(1)若点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值;
(2)过A,B分别作抛物线E的切线l1,l2,若l1与l2交于点P,求$\frac{\overrightarrow{FA}•\overrightarrow{FB}}{|\overrightarrow{PF}{|}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{lnx+ax+1}{x}$.
(1)若对任意x>0,f(x)<0恒成立,求实数a的取值范围;
(2)若函数f(x)有两个不同的零点x1,x2(x1<x2),证明:x12+x22>2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设全集U={x|1≤x≤5},若集合M={1},则∁UM=(1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}和{bn}满足:${a_{n+k}}-{({-1})^k}•{a_n}={b_n}(n∈{N^*})$.
(1)若$k=1,{a_1}=1,{b_n}={2^n}$,求数列{an}的通项公式;
(2)若k=4,bn=8,a1=4,a2=6,a3=8,a4=10.
①求证:数列{an}为等差数列;
②记数列{an}的前n项和为Sn,求满足${({{S_n}+1})^2}-\frac{3}{2}{a_n}+33={k^2}$的所有正整数k和n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC的内角A,B,C对边分别为a,b,c,若满足$\frac{2c-b}{a}$=$\frac{cosB}{cosA}$,且$a=2\sqrt{5}$,则△ABC面积的最大值5$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=sin($\frac{x}{4}$-$\frac{π}{3}$),若存在实数x1,x2使得对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值是(  )
A.B.C.D.π

查看答案和解析>>

同步练习册答案