精英家教网 > 高中数学 > 题目详情
14.古有苏秦、张仪唇枪舌剑驰骋于乱世之秋,今看我一中学子论天、论地、指点江山.现在高二某班需从甲、乙、丙、丁、戊五位同学中,选出四位同学组成重庆一中“口才季”中的一个辩论队,根据他们的文化、思维水平,分别担任一辩、二辩、三辩、四辩,其中四辩必须由甲或乙担任,而丙与丁不能担任一辩,则不同组队方式有(  )
A.12种B.16种C.20种D.24种

分析 分两类,若甲乙有1人担任一辩,若甲乙没有人担任一辩,则戊一定一辩,根据分类计数原理可得

解答 解:若甲乙有1人担任一辩,则有A22A32=12种,
若甲乙没有人担任一辩,则戊一定一辩,则有A21A32=12种,
根据分类计数原理可得共有12+12=24种,
故选:D.

点评 本题考查排列、组合的应用,首先注意特殊问题的处理方法,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某冰淇淋店要派车到100千米外的冷饮加工厂原料,再加工成冰淇淋后售出,已知汽车每小时的运行成本F(单位:元)与其自重m(包括车子、驾驶员及所载货物等的质量,单位:千克)和车速v(单位:千米/小时)之间满足关系式:$F=\frac{1}{1600}m{v^2}$.在运输途中,每千克冷饮每小时的冷藏费为10元,每千克冷饮经过冰淇淋店再加工后,可获利100元.若汽车重量(包括驾驶员等,不含货物)为1.3吨,最大载重为1吨.汽车来回的速度为v(单位:千米/小时),且最大车速为80千米,一次进货x千克,而且冰淇淋供不应求.
(1)求冰淇淋店进一次货,经加工售卖后所得净利润w与车速v和进货量x之间的关系式;
(2)每次至少进货多少千克,才能使得销售后不会亏本(净利润w≥0)?
(3)当一次进货量x与车速v分别为多少时,能使得冰淇淋店有最大净利润?并求出最大值.(提示:${({\sqrt{x+b}})^′}=\frac{1}{{2\sqrt{x+b}}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆A:x2+y2+2x-15=0,过点B(1,0)作直线l(与x轴不重合)交圆A于C,D两点,过B作AC的平行线交AD于点E.
(Ⅰ) 求点E的轨迹方程;
(Ⅱ)动点M在曲线E上,动点N在直线$l:y=2\sqrt{3}$上,若OM⊥ON,求证:原点O到直线MN的距离是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,三棱柱ABC-A1B1C1中,AB=AC=CC1,平面BAC1⊥平面ACC1A1,∠ACC1=∠BAC1=60°,AC1∩A1C=O.
(Ⅰ)求证:BO⊥平面AA1C1C;
(Ⅱ)求二面角A-BC1-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.从5名男公务员和4名女公务员中选出3人,分别派到西部的三个不同地区,要求3人中既有男公务员又有女公务员,则不同的选派方法种数是420.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,直三棱柱的主视图是边长为2的正方形,且俯视图为一个等边三角形,则该三棱柱的左视图面积为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax+logax(a>0,且a≠1).
(1)若f(5a-3)>f(3a),求实数a的取值范围;
(2)若a=2
①求证:f(x)的零点在($\frac{1}{4}$,$\frac{1}{2}$)上;
②求证:对任意λ>0,存在μ>0,使f(x)<0在(0,λμ)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$\overrightarrow a=(1\;,\;3)$,$\overrightarrow b=(-2\;,\;5)$,则$3\overrightarrow a-2\overrightarrow b$=(  )
A.(2,7)B.(13,-7)C.(7,-1)D.(-1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线$\left\{\begin{array}{l}{x=-1+t}\\{y=9-t}\end{array}\right.$(t为参数)被圆$\left\{\begin{array}{l}{x=5cosθ+3}\\{y=5sinθ-1}\end{array}\right.$(θ为参数)所截得的弦长为$2\sqrt{7}$.

查看答案和解析>>

同步练习册答案