精英家教网 > 高中数学 > 题目详情
2.已知$\overrightarrow a=(1\;,\;3)$,$\overrightarrow b=(-2\;,\;5)$,则$3\overrightarrow a-2\overrightarrow b$=(  )
A.(2,7)B.(13,-7)C.(7,-1)D.(-1,-1)

分析 根据向量的坐标运算即可求出.

解答 解:∵$\overrightarrow a=(1\;,\;3)$,$\overrightarrow b=(-2\;,\;5)$,
∴$3\overrightarrow a-2\overrightarrow b$=3(1,3)-2(-2,5)=(3,9)-(-4,10)=(7,-1),
故选:C.

点评 本题考查了向量的坐标运算,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2sinxcosx-$\sqrt{3}$(cos2x-sin2x).
(1)求f(x)的最小正周期;
(2)若f(x0)=$\sqrt{3}$,且x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.古有苏秦、张仪唇枪舌剑驰骋于乱世之秋,今看我一中学子论天、论地、指点江山.现在高二某班需从甲、乙、丙、丁、戊五位同学中,选出四位同学组成重庆一中“口才季”中的一个辩论队,根据他们的文化、思维水平,分别担任一辩、二辩、三辩、四辩,其中四辩必须由甲或乙担任,而丙与丁不能担任一辩,则不同组队方式有(  )
A.12种B.16种C.20种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.作函数y=|1g|x-1||的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数$f(x)=6-12x+{x^3},x∈[-\frac{1}{3},1]$的最值以及对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.2-2的值为(  )
A.4B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a<0<b,且$\frac{1}{a}>-\frac{1}{b}$,则下列不等式:①|b|>|a|;②a+b>0;③$\frac{b}{a}+\frac{a}{b}<-2$;④$a>2b-\frac{a^2}{b}$中,正确的不等式有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆x2+8y2=1的短轴端点坐标是(  )
A.(-2$\sqrt{2}$,0),(2$\sqrt{2}$,0)B.(-1,0),(1,0)C.(0,-$\frac{\sqrt{2}}{4}$),(0,$\frac{\sqrt{2}}{4}$)D.$(0,-2\sqrt{2}),(0,2\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某工厂的污水处理程序如下:原始污水必先经过A系统处理,处理后的污水(A级水)达到环保标准(简称达标)的概率为p(0<p<1).经化验检测,若确认达标便可直接排放;若不达标则必须进行B系统处理后直接排放.
某厂现有4个标准水量的A级水池,分别取样、检测.多个污水样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验.混合样本中只要有样本不达标,则混合样本的化验结果必不达标.若混合样本不达标,则该组中各个样本必须再逐个化验;若混合样本达标,则原水池的污水直接排放.
现有以下四种方案,
方案一:逐个化验;
方案二:平均分成两组化验;
方案三:三个样本混在一起化验,剩下的一个单独化验;
方案四:混在一起化验.
化验次数的期望值越小,则方案的越“优”.
(Ⅰ) 若$p=\frac{2}{{\sqrt{5}}}$,求2个A级水样本混合化验结果不达标的概率;
(Ⅱ) 若$p=\frac{2}{{\sqrt{5}}}$,现有4个A级水样本需要化验,请问:方案一,二,四中哪个最“优”?
(Ⅲ) 若“方案三”比“方案四”更“优”,求p的取值范围.

查看答案和解析>>

同步练习册答案