精英家教网 > 高中数学 > 题目详情
7.2-2的值为(  )
A.4B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

分析 利用指数的运算性质即可得出.

解答 解:2-2=$\frac{1}{{2}^{2}}$=$\frac{1}{4}$.
故选:D.

点评 本题考查了指数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知四棱锥S-ABCD的底面为平行四边形SD⊥面ABCD,SD=1,AB=2,AD=1,∠DAB=60°,M、N分别为SB、SC中点,过MN作平面MNPQ分别与线段CD、AB相交于点P、Q.
(1)在图中作出平面MNPQ,使面MNPQ∥面SAD,并指出P、Q的位置
(不要求证明);
(2)若$\overrightarrow{AQ}=\frac{1}{3}\overrightarrow{AB}$,求二面角M-PQ-B的平面角大小?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,直三棱柱的主视图是边长为2的正方形,且俯视图为一个等边三角形,则该三棱柱的左视图面积为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=x3的切线的斜率等于3,则切线有2条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$\overrightarrow a=(1\;,\;3)$,$\overrightarrow b=(-2\;,\;5)$,则$3\overrightarrow a-2\overrightarrow b$=(  )
A.(2,7)B.(13,-7)C.(7,-1)D.(-1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设二次函数f(x)=x2+ax+b,若对任意的实数a,都存在实数$x∈[{\frac{1}{2},2}]$,使得不等式|f(x)|≥x成立,则实数b的取值范围是(  )
A.$({-∞,-\frac{1}{3}}]∪[{2,+∞}]$B.$({-∞,-\frac{1}{3}}]∪[{\frac{1}{4},+∞})$C.$({-∞,\frac{1}{4}}]∪[{\frac{9}{4},+∞})$D.$({-∞,-\frac{1}{3}}]∪[{\frac{9}{4},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为了得到函数$y=3sin(x+\frac{π}{3})$的图象,只需将函数y=3sin(x-$\frac{π}{3}$)的图象(  )
A.向右平移$\frac{π}{3}$个单位长度B.向左平移$\frac{π}{3}$个单位长度
C.向右平移$\frac{2π}{3}$个单位长度D.向左平移$\frac{2π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若向量$\overrightarrow{a}$=(2,m)与$\overrightarrow{b}$=(m,8)的方向相反,则m的值是(  )
A.-4B.4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,三角形ABC中,AB=1,$BC=\sqrt{3}$,以C为直角顶点向外作等腰直角三角形ACD,当∠ABC变化时,线段BD的长度最大值为(  )
A.$\sqrt{6}-1$B.$\sqrt{6}$C.$\sqrt{6}+1$D.$2\sqrt{3}$

查看答案和解析>>

同步练习册答案