精英家教网 > 高中数学 > 题目详情
12.设二次函数f(x)=x2+ax+b,若对任意的实数a,都存在实数$x∈[{\frac{1}{2},2}]$,使得不等式|f(x)|≥x成立,则实数b的取值范围是(  )
A.$({-∞,-\frac{1}{3}}]∪[{2,+∞}]$B.$({-∞,-\frac{1}{3}}]∪[{\frac{1}{4},+∞})$C.$({-∞,\frac{1}{4}}]∪[{\frac{9}{4},+∞})$D.$({-∞,-\frac{1}{3}}]∪[{\frac{9}{4},+∞})$

分析 问题转化为只需$g(x)=x+\frac{b}{x},x∈[{\frac{1}{2},2}]$的最大值与最小值之差小于2即可.通过讨论b的范围,求出最大值和最小值的差,从而确定b的范围即可.

解答 解:问题条件的反面为“若存在实数a,对任意实数$x∈[{\frac{1}{2},2}]$,使得不等式|f(x)|<x成立”,
即$?x∈[{\frac{1}{2},2}],-1<x+\frac{b}{x}+a<1$,
只要$g(x)=x+\frac{b}{x},x∈[{\frac{1}{2},2}]$的最大值与最小值之差小于2即可.
当b≥4时,$g(\frac{1}{2})-g(2)<2$,得b∈∅,
当$\frac{1}{4}<b<4$时,$\left\{{\begin{array}{l}{g(2)-2\sqrt{b}<2}\\{g(\frac{1}{2})-2\sqrt{b}<2}\end{array}}\right.$,得$\frac{1}{4}<b<\frac{9}{4}$,
当$b≤\frac{1}{4}$时,$g(2)-g(\frac{1}{2})<2$,得$-\frac{1}{3}<b≤\frac{1}{4}$,
所以,$-\frac{1}{3}<b<\frac{9}{4}$,
综上可得,所求实数b的取值范围是$b≤-\frac{1}{3},或b≥\frac{9}{4}$,
故选:D.

点评 本题考查了二次函数的性质,考查分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且csinC-asinA=(b-a)sinB.
(Ⅰ)求角C的大小;
(Ⅱ)求cosA+cosB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数fn(x)=$\frac{n{x}^{2}-ax}{{x}^{2}+1}$(n∈N*)的图象在原点处的切线的倾斜角为135°.
(1)求f1(x)的单调区间;
(2)设x1,x2,…,xn为正实数,且$\sum_{i=1}^{n}$xi=1,求证:fn(x1)+fn(x2)+…+fn(xn)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知角α终边上一点P(m,1),$cosα=-\frac{1}{3}$,求tanα的值;
(2)求值:$\frac{tan150°cos(-210°)sin(-420°)}{sin1050°cos(-600°)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.2-2的值为(  )
A.4B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.各项均为正数的数列{an}的前n项和为Sn,已知点(an,an+1)(n∈N*)在函数$y=\frac{1}{3}x$的图象上,且${S_3}=\frac{13}{9}$.
(1)求数列{an}的通项公式及前n项和Sn
(2)已知数列{bn}满足bn=4-n,设其前n项和为Tn,若存在正整数k,使不等式Tn>k有解,且$k{(-1)^n}a_n^2<{S_n}$(n∈N*)恒成立,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过点(-1,2)且在坐标轴上的截距相等的直线的一般式方程是2x+y=0或x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.随着社会发展,广州市在一天的上下班时段经常会出现堵车严重的现象.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别;T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10)严重拥堵.早高峰时段(T≥3),从广州市交通指挥中心随机选取了50个交通路段进行调查,依据交通指数数据绘制的直方图如图所示:
(1)据此直方图,估算交通指数T∈[3,9)时的中位数和平均数;
(2)据此直方图,求市区早高峰马路之间的3个路段至少有2个严重拥堵的概率;
(3)某人上班路上所用时间,若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟;中度拥堵为45分钟;严重拥堵为60分钟,求此人上班所用时间的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=Asin(ωx+φ)的部分图象如图所示,若f(4)=-f(6)=-1,且$f(\frac{1}{2})=0$,则f(2017)=
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案