精英家教网 > 高中数学 > 题目详情
17.各项均为正数的数列{an}的前n项和为Sn,已知点(an,an+1)(n∈N*)在函数$y=\frac{1}{3}x$的图象上,且${S_3}=\frac{13}{9}$.
(1)求数列{an}的通项公式及前n项和Sn
(2)已知数列{bn}满足bn=4-n,设其前n项和为Tn,若存在正整数k,使不等式Tn>k有解,且$k{(-1)^n}a_n^2<{S_n}$(n∈N*)恒成立,求k的值.

分析 (1)利用点在函数的图象上,推出递推关系式,然后求解数列的和.
(2)利用不等式恒成立,转化为函数的关系,通过二次函数的性质,以及数列的和得到不等式,求解k即可.

解答 解:(1)由题意,${a_{n+1}}=\frac{1}{3}{a_n}$,
得数列{an}为等比数列,
得${a_1}+\frac{1}{3}{a_1}+\frac{1}{9}{a_1}=\frac{13}{9}$,解得a1=1.
∴${a_n}={(\frac{1}{3})^{n-1}}$.${S_n}=\frac{{1-{{(\frac{1}{3})}^n}}}{{1-\frac{1}{3}}}=\frac{3}{2}[1-{(\frac{1}{3})^n}]$.
(2)$k{(-1)^n}a_n^2<{S_n}$(n∈N*)恒成立等价于$k{(-1)^n}{(\frac{1}{3})^{2(n-1)}}<\frac{1}{2}[3-{(\frac{1}{3})^{n-1}}]$(n∈N*)恒成立,
当n为奇数时,上述不等式左边恒为负数,右边恒为正数,所以对任意正整数k,不等式恒成立;
当n为偶数时,上述不等式等价于$2k{(\frac{1}{3})^{2(n-1)}}+{(\frac{1}{3})^{n-1}}-3<0$恒成立,
令${(\frac{1}{3})^{n-1}}=t$,有$0<t≤\frac{1}{3}$,
则①等价于2kt2+t-3<0在$0<t≤\frac{1}{3}$时恒成立,
因为k为正整数,二次函数y=2kt2+t-3的对称轴显然在y轴左侧,
所以当$0<t≤\frac{1}{3}$时,二次函数为增函数,
故只须$2k{(\frac{1}{3})^2}+\frac{1}{3}-3<0$,
解得0<k<12,k∈N*.{bn}是首项为b1=3,公差为d=-1的等差数列,所以前n项和${T_n}=3n+\frac{n(n-1)×(-1)}{2}$=$\frac{{-{n^2}+7n}}{2}$.
当n=3或4时,Tn取最大值为6.Tn>k有解?(Tnmax>k?k<6.
又0<k<12,k∈N*
得0<k<6,k∈N*
所以k的取值为1,2,3,4,5.

点评 本题考查数列与函数相结合,不等式的应用,函数的性质,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆的两个焦点为F1(-$\sqrt{5}$,0),F2($\sqrt{5}$,0),M是椭圆上一点,若$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0,|$\overrightarrow{M{F}_{1}}$|•|$\overrightarrow{M{F}_{2}}$|=8.
(1)求椭圆的方程;
(2)点P是椭圆上任意一点,A1、A2分别是椭圆的左、右顶点,直线PA1,PA2与直线x=$\frac{3\sqrt{5}}{2}$分别交于E,F两点,试证:以EF为直径的圆交x轴于定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,边a,b,c的对角分别为A,B,C,其中C=$\frac{π}{3}$,c=$\sqrt{3}$,则a2+b2的取值范围为(3,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=6x3+3(a+2)x2+2ax.
(I)若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值;
(II)是否存在实数a,使得f(x)是R上的单调函数?若存在,求出a的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设二次函数f(x)=x2+ax+b,若对任意的实数a,都存在实数$x∈[{\frac{1}{2},2}]$,使得不等式|f(x)|≥x成立,则实数b的取值范围是(  )
A.$({-∞,-\frac{1}{3}}]∪[{2,+∞}]$B.$({-∞,-\frac{1}{3}}]∪[{\frac{1}{4},+∞})$C.$({-∞,\frac{1}{4}}]∪[{\frac{9}{4},+∞})$D.$({-∞,-\frac{1}{3}}]∪[{\frac{9}{4},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如右图抛物线顶点在原点,圆(x-2)2+y2=22的圆心恰是抛物线的焦点,
(Ⅰ)求抛物线的方程;
(Ⅱ)一直线的斜率等于2,且过抛物线焦点,它依次截抛物线和圆于A、B、C、D四点,求|AB|+|CD|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列叙述中正确的是(  )
A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”
B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”
C.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β
D.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.二项式(x+$\frac{2}{{x}^{3}}$)8展开式的常数项等于(  )
A.C${\;}_{8}^{4}$B.C${\;}_{8}^{2}$C.24C${\;}_{8}^{4}$D.22C${\;}_{8}^{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线C:x2=4y的焦点为F,直线l:y=kx+a(a>0)与抛物线C交于A,B两点.
(Ⅰ)若直线l过焦点F,且与圆x2+(y-1)2=1交于D,E(其中A,D在y轴同侧),求证:|AD|•|BE|是定值;
(Ⅱ)设抛物线C在A和B点的切线交于点P,试问:y轴上是否存在点Q,使得APBQ为菱形?若存在,请说明理由并求此时直线l的斜率和点Q的坐标.

查看答案和解析>>

同步练习册答案