精英家教网 > 高中数学 > 题目详情
9.下列叙述中正确的是(  )
A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”
B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”
C.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β
D.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”

分析 A.根据充分条件的定义进行判断,
B.根据充要条件的定义进行判断,
C.根据线面垂直和面面平行的性质进行判断,
D.根据全称命题的否定是特称命题进行判断.

解答 解:A.当a>0,b=0,c≥0时,满足b2-4ac≤0,但ax2+bx+c≥0不恒成立,故A错误,
B.当b=0,a>c时,ab2>cb2不成立,即必要性不成立,故B错误,
C.根据线面垂直的性质得若l⊥α,l⊥β,则α∥β成立,故C正确,
D.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2<0”,故D错误,
故选:C

点评 本题主要考查命题的真假平时,涉及充分条件和必要条件的判断,空间线面平行的位置关系以及含有量词的命题的否定,涉及的知识点较多,难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin(ωx+φ)(ω>0,$|φ|<\frac{π}{2}$)的零点构成一个公差为$\frac{π}{2}$的等差数列,$f(0)=-\frac{{\sqrt{3}}}{2}$,则f(x)的一个单调递增区间是(  )
A.$(-\frac{5π}{12},\frac{π}{12})$B.$(-\frac{π}{6},\frac{π}{3})$C.$(-\frac{π}{12},\frac{5π}{12})$D.$(\frac{π}{12},\frac{7π}{12})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知角α终边上一点P(m,1),$cosα=-\frac{1}{3}$,求tanα的值;
(2)求值:$\frac{tan150°cos(-210°)sin(-420°)}{sin1050°cos(-600°)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.各项均为正数的数列{an}的前n项和为Sn,已知点(an,an+1)(n∈N*)在函数$y=\frac{1}{3}x$的图象上,且${S_3}=\frac{13}{9}$.
(1)求数列{an}的通项公式及前n项和Sn
(2)已知数列{bn}满足bn=4-n,设其前n项和为Tn,若存在正整数k,使不等式Tn>k有解,且$k{(-1)^n}a_n^2<{S_n}$(n∈N*)恒成立,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过点(-1,2)且在坐标轴上的截距相等的直线的一般式方程是2x+y=0或x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=lg$\frac{100}{\sqrt{1+9{x}^{2}}-3x}$,则f(2017)+f(-2017)=(  )
A.0B.2C.4D.4034

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.随着社会发展,广州市在一天的上下班时段经常会出现堵车严重的现象.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别;T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10)严重拥堵.早高峰时段(T≥3),从广州市交通指挥中心随机选取了50个交通路段进行调查,依据交通指数数据绘制的直方图如图所示:
(1)据此直方图,估算交通指数T∈[3,9)时的中位数和平均数;
(2)据此直方图,求市区早高峰马路之间的3个路段至少有2个严重拥堵的概率;
(3)某人上班路上所用时间,若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟;中度拥堵为45分钟;严重拥堵为60分钟,求此人上班所用时间的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y2=2px(p>0)上的点M(x0,y0)到点N(2,0)距离的最小值为$\sqrt{3}$.
(1)求抛物线C的方程;
(2)若x0>2,圆E(x-1)2+y2=1,过M作圆E的两条切线分别交y轴A(0,a),B(0,b)两点,求△MAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数y=-x2+l的切线l与x轴,y轴的交点分别为A,B,O为坐标原点,则△OAB的面积的最小值为$\frac{{4\sqrt{3}}}{9}$.

查看答案和解析>>

同步练习册答案