12£®Ä³¹¤³§µÄÎÛË®´¦Àí³ÌÐòÈçÏ£ºÔ­Ê¼ÎÛË®±ØÏȾ­¹ýAϵͳ´¦Àí£¬´¦ÀíºóµÄÎÛË®£¨A¼¶Ë®£©´ïµ½»·±£±ê×¼£¨¼ò³Æ´ï±ê£©µÄ¸ÅÂÊΪp£¨0£¼p£¼1£©£®¾­»¯Ñé¼ì²â£¬ÈôÈ·ÈÏ´ï±ê±ã¿ÉÖ±½ÓÅÅ·Å£»Èô²»´ï±êÔò±ØÐë½øÐÐBϵͳ´¦ÀíºóÖ±½ÓÅÅ·Å£®
ij³§ÏÖÓÐ4¸ö±ê׼ˮÁ¿µÄA¼¶Ë®³Ø£¬·Ö±ðÈ¡Ñù¡¢¼ì²â£®¶à¸öÎÛË®Ñù±¾¼ì²âʱ£¬¼È¿ÉÒÔÖð¸ö»¯Ñ飬Ҳ¿ÉÒÔ½«Èô¸É¸öÑù±¾»ìºÏÔÚÒ»Æð»¯Ñ飮»ìºÏÑù±¾ÖÐÖ»ÒªÓÐÑù±¾²»´ï±ê£¬Ôò»ìºÏÑù±¾µÄ»¯Ñé½á¹û±Ø²»´ï±ê£®Èô»ìºÏÑù±¾²»´ï±ê£¬Ôò¸Ã×éÖи÷¸öÑù±¾±ØÐëÔÙÖð¸ö»¯Ñ飻Èô»ìºÏÑù±¾´ï±ê£¬ÔòÔ­Ë®³ØµÄÎÛˮֱ½ÓÅÅ·Å£®
ÏÖÓÐÒÔÏÂËÄÖÖ·½°¸£¬
·½°¸Ò»£ºÖð¸ö»¯Ñ飻
·½°¸¶þ£ºÆ½¾ù·Ö³ÉÁ½×黯Ñ飻
·½°¸Èý£ºÈý¸öÑù±¾»ìÔÚÒ»Æð»¯Ñ飬ʣϵÄÒ»¸öµ¥¶À»¯Ñ飻
·½°¸ËÄ£º»ìÔÚÒ»Æð»¯Ñ飮
»¯Ñé´ÎÊýµÄÆÚÍûֵԽС£¬Ôò·½°¸µÄÔ½¡°ÓÅ¡±£®
£¨¢ñ£© Èô$p=\frac{2}{{\sqrt{5}}}$£¬Çó2¸öA¼¶Ë®Ñù±¾»ìºÏ»¯Ñé½á¹û²»´ï±êµÄ¸ÅÂÊ£»
£¨¢ò£© Èô$p=\frac{2}{{\sqrt{5}}}$£¬ÏÖÓÐ4¸öA¼¶Ë®Ñù±¾ÐèÒª»¯Ñ飬ÇëÎÊ£º·½°¸Ò»£¬¶þ£¬ËÄÖÐÄĸö×î¡°ÓÅ¡±£¿
£¨¢ó£© Èô¡°·½°¸Èý¡±±È¡°·½°¸ËÄ¡±¸ü¡°ÓÅ¡±£¬ÇópµÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©¼ÆËã2¸öA¼¶»ìºÏÑù±¾´ï±êµÄ¸ÅÂÊ£¬ÔÙ¸ù¾Ý¶ÔÁ¢Ê¼þÔ­ÀíÇóµÃËüÃDz»´ï±êµÄ¸ÅÂÊ£»
£¨II£©¼ÆËã·½°¸Ò»£ºÖð¸ö¼ì²â£¬¼ì²â´ÎÊýΪ¦Î=4£»
·½°¸¶þ£º¼ì²â´ÎÊýΪ¦Î2£¬Ôò¦Î2¿ÉÄÜȡֵΪ2£¬4£¬6£¬Çó¸ÅÂÊ·Ö²¼ÁУ¬¼ÆËãÊýѧÆÚÍû£»
·½°¸ËÄ£º»ìÔÚÒ»Æð¼ì²â£¬¼ì²â´ÎÊýΪ¦Î4£¬Ôò¦Î4¿ÉȡֵΪ1£¬5£¬Çó¸ÅÂÊ·Ö²¼ÁУ¬¼ÆËãÊýѧÆÚÍû£»
±È½ÏµÃ³öÑ¡Ôñ·½°¸¼¸×î¡°ÓÅ¡±£»
£¨III£©·½°¸Èý£º»¯Ñé´ÎÊýΪ¦Ç3£¬Ôò¦Ç3¿ÉȡֵΪ2£¬5£¬Çó¸ÅÂÊ·Ö²¼ÁУ¬¼ÆËãÊýѧÆÚÍû£»
·½°¸ËÄ£º»¯Ñé´ÎÊýΪ¦Ç4£¬Ôò¦Ç4¿ÉȡֵΪ1£¬5£¬Çó¸ÅÂÊ·Ö²¼£¬¼ÆËãÊýѧÆÚÍû£»
ÓÉÌâÒâÁв»µÈʽE£¨¦Ç3£©£¼E£¨¦Ç4£©£¬Çó³öpµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©2¸öA¼¶»ìºÏÑù±¾´ï±êµÄ¸ÅÂÊÊÇ${£¨{\frac{2}{{\sqrt{5}}}}£©^2}=\frac{4}{5}$£¬¡­£¨2·Ö£©
ËùÒÔ¸ù¾Ý¶ÔÁ¢Ê¼þÔ­Àí£¬2¸öA¼¶»ìºÏÑù±¾²»´ï±êµÄ¸ÅÂÊΪ$1-\frac{4}{5}=\frac{1}{5}$£»¡­£¨4·Ö£©
£¨II£©·½°¸Ò»£ºÖð¸ö¼ì²â£¬¼ì²â´ÎÊýΪ¦Î=4£»
·½°¸¶þ£ºÓÉ£¨I£©Öª£¬Ã¿×é2¸öÑù±¾µÄ¼ì²âʱ£¬Èô´ï±êÔò¼ì²â´ÎÊýΪ1£¬¸ÅÂÊΪ$\frac{4}{5}$£»
Èô²»´ï±êÔò¼ì²â´ÎÊýΪ3£¬¸ÅÂÊΪ$\frac{1}{5}$£»
 ¹Ê·½°¸¶þµÄ¼ì²â´ÎÊýΪ¦Î2£¬Ôò¦Î2¿ÉÄÜȡֵΪ2£¬4£¬6£»
Æä¸ÅÂÊ·Ö²¼ÁÐÈçÏ£¬

¦Î2246
P${£¨{\frac{4}{5}}£©^2}$$C_2^1¡Á\frac{1}{5}¡Á\frac{4}{5}$${£¨{\frac{1}{5}}£©^2}$
¿ÉÇóµÃ·½°¸¶þµÄÆÚÍûΪ$E£¨{¦Î_2}£©=2¡Á\frac{16}{25}+4¡Á\frac{8}{25}+6¡Á\frac{1}{25}=\frac{70}{25}$£»¡­£¨6·Ö£©
·½°¸ËÄ£º»ìÔÚÒ»Æð¼ì²â£¬¼Ç¼ì²â´ÎÊýΪ¦Î4£¬
Ôò¦Î4¿ÉȡֵΪ1£¬5£»Æä¸ÅÂÊ·Ö²¼ÁÐÈçÏ£º
¦Î415
P${£¨{\frac{2}{{\sqrt{5}}}}£©^4}$$1-{£¨{\frac{2}{{\sqrt{5}}}}£©^4}$
¿ÉÇóµÃ·½°¸ËĵįÚÍûΪ$E£¨{¦Î_4}£©=1¡Á\frac{16}{25}+5¡Á\frac{9}{25}=\frac{61}{25}$£¬¡­£¨8·Ö£©
±È½Ï¿ÉµÃE£¨¦Î4£©£¼E£¨¦Î2£©£¼4£¬¹ÊÑ¡Ôñ·½°¸ËÄ×î¡°ÓÅ¡±£»¡­£¨9·Ö£©
£¨III£©·½°¸Èý£ºÉ軯Ñé´ÎÊýΪ¦Ç3£¬Ôò¦Ç3¿ÉȡֵΪ2£¬5£»
Æä¸ÅÂÊ·Ö²¼Îª£º
¦Ç325
Pp31-p3
ÊýѧÆÚÍûΪ$E£¨{¦Ç_3}£©=2•{p^3}+5£¨{1-{p^3}}£©=5-3{p^3}$£»¡­£¨10·Ö£©
·½°¸ËÄ£ºÉ軯Ñé´ÎÊýΪ¦Ç4£¬Ôò¦Ç4¿ÉȡֵΪ1£¬5£»
Æä¸ÅÂÊ·Ö²¼Îª£º
¦Ç415
Pp41-p4
ÊýѧÆÚÍûΪ$E£¨{¦Ç_4}£©=1•{p^4}+5£¨{1-{p^4}}£©=5-4{p^4}$£»¡­£¨11·Ö£©
ÓÉÌâÒâµÃE£¨¦Ç3£©£¼E£¨¦Ç4£©£¬ËùÒÔ5-3p3£¼5-4p4£¬½âµÃp£¼$\frac{3}{4}$£»
ËùÒÔµ±$0£¼p£¼\frac{3}{4}$ʱ£¬·½°¸Èý±È·½°¸Ëĸü¡°ÓÅ¡±¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ¸ÅÂÊ·Ö²¼ÁÐÓëÊýѧÆÚÍûµÄÓ¦ÓÃÎÊÌ⣬ÊǸÅÂÊ·Ö²¼ÖнÏÄѵÄÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖª$\overrightarrow a=£¨1\;£¬\;3£©$£¬$\overrightarrow b=£¨-2\;£¬\;5£©$£¬Ôò$3\overrightarrow a-2\overrightarrow b$=£¨¡¡¡¡£©
A£®£¨2£¬7£©B£®£¨13£¬-7£©C£®£¨7£¬-1£©D£®£¨-1£¬-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Ö±Ïß$\left\{\begin{array}{l}{x=-1+t}\\{y=9-t}\end{array}\right.$£¨tΪ²ÎÊý£©±»Ô²$\left\{\begin{array}{l}{x=5cos¦È+3}\\{y=5sin¦È-1}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©Ëù½ØµÃµÄÏÒ³¤Îª$2\sqrt{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®¼Ñ¼ÑͬѧÔÚ8´Î²âÊÔÖУ¬Êýѧ³É¼¨µÄ¾¥Ò¶Í¼Èçͼ£¬ÔòÕâ8´Î³É¼¨µÄÖÐλÊýÊÇ£¨¡¡¡¡£©
A£®86B£®87C£®87.5D£®88.5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ëæ»ú±äÁ¿X·þ´ÓÕý̬·Ö²¼£¨3£¬¦Ò2£©£¬ÇÒP£¨X¡Ü4£©=0.84£¬ÔòP£¨2£¼X£¼4£©=£¨¡¡¡¡£©
A£®0.16B£®0.32C£®0.68D£®0.84

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬Èý½ÇÐÎABCÖУ¬AB=1£¬$BC=\sqrt{3}$£¬ÒÔCΪֱ½Ç¶¥µãÏòÍâ×÷µÈÑüÖ±½ÇÈý½ÇÐÎACD£¬µ±¡ÏABC±ä»¯Ê±£¬Ïß¶ÎBDµÄ³¤¶È×î´óֵΪ£¨¡¡¡¡£©
A£®$\sqrt{6}-1$B£®$\sqrt{6}$C£®$\sqrt{6}+1$D£®$2\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¸÷Ïî¾ùΪÕýÊýµÄµÈ²îÊýÁÐ{an}ÖУ¬Ç°nÏîºÍΪSn£¬µ±n¡ÊN*£¬n¡Ý2ʱ£¬ÓÐ${S_n}=\frac{n}{n-1}£¨{a_n}^2-{a_1}^2£©$£¬ÔòS20-2S10=50£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¸´Êý$\frac{2}{1-i}$=£¨¡¡¡¡£©
A£®$\sqrt{2}$+$\sqrt{2}$iB£®$\frac{{\sqrt{2}}}{2}$+$\frac{{\sqrt{2}}}{2}$iC£®1-iD£®1+i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÈôÔÚ¡÷ABCÖУ¬sinA£ºsinB£ºsinC=3£º5£º6£¬ÔòsinBµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{{2\sqrt{14}}}{9}$B£®$\frac{{\sqrt{14}}}{9}$C£®$\frac{{\sqrt{11}}}{5}$D£®$\frac{{2\sqrt{11}}}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸