精英家教网 > 高中数学 > 题目详情
3.直线$\left\{\begin{array}{l}{x=-1+t}\\{y=9-t}\end{array}\right.$(t为参数)被圆$\left\{\begin{array}{l}{x=5cosθ+3}\\{y=5sinθ-1}\end{array}\right.$(θ为参数)所截得的弦长为$2\sqrt{7}$.

分析 分别化直线与圆的参数方程为普通方程,由点到直线的距离公式求出圆心到直线的距离,再由垂径定理得答案.

解答 解:由$\left\{\begin{array}{l}{x=-1+t}\\{y=9-t}\end{array}\right.$,得x+y-8=0,
由$\left\{\begin{array}{l}{x=5cosθ+3}\\{y=5sinθ-1}\end{array}\right.$,得$\left\{\begin{array}{l}{x-3=5cosθ}\\{y+1=5sinθ}\end{array}\right.$,
两式平方作和得:(x-3)2+(y+1)2=25.
∴圆心坐标为(3,-1),半径为5.
圆心到直线的距离d=$\frac{|1×3+1×(-1)-8|}{\sqrt{2}}=\frac{6}{\sqrt{2}}=3\sqrt{2}$.
∴直线被圆所截弦长为2$\sqrt{{r}^{2}-{d}^{2}}=2\sqrt{25-18}=2\sqrt{7}$.
故答案为:$2\sqrt{7}$.

点评 本题考查参数方程化普通方程,考查了直线与圆位置关系的应用,考查垂径定理的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.古有苏秦、张仪唇枪舌剑驰骋于乱世之秋,今看我一中学子论天、论地、指点江山.现在高二某班需从甲、乙、丙、丁、戊五位同学中,选出四位同学组成重庆一中“口才季”中的一个辩论队,根据他们的文化、思维水平,分别担任一辩、二辩、三辩、四辩,其中四辩必须由甲或乙担任,而丙与丁不能担任一辩,则不同组队方式有(  )
A.12种B.16种C.20种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a<0<b,且$\frac{1}{a}>-\frac{1}{b}$,则下列不等式:①|b|>|a|;②a+b>0;③$\frac{b}{a}+\frac{a}{b}<-2$;④$a>2b-\frac{a^2}{b}$中,正确的不等式有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆x2+8y2=1的短轴端点坐标是(  )
A.(-2$\sqrt{2}$,0),(2$\sqrt{2}$,0)B.(-1,0),(1,0)C.(0,-$\frac{\sqrt{2}}{4}$),(0,$\frac{\sqrt{2}}{4}$)D.$(0,-2\sqrt{2}),(0,2\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a>0,b>0,且2a+b=1,则2$\sqrt{ab}$-4a2-b2的最大值是$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC中,角A、B、C所对的边分别为a,b,c,且$\frac{a-b}{c}$=$\frac{sinB+sinC}{sinA+sinB}$
(1)求A
(2)求cosB+cosC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,Sn=2an-1,{bn}是等差数列,且b1=a1,b4=a3
(1)求数列{an}和{bn}的通项公式;
(2)若${c_n}=\frac{2}{a_n}-\frac{1}{{{b_n}{b_{n+1}}}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某工厂的污水处理程序如下:原始污水必先经过A系统处理,处理后的污水(A级水)达到环保标准(简称达标)的概率为p(0<p<1).经化验检测,若确认达标便可直接排放;若不达标则必须进行B系统处理后直接排放.
某厂现有4个标准水量的A级水池,分别取样、检测.多个污水样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验.混合样本中只要有样本不达标,则混合样本的化验结果必不达标.若混合样本不达标,则该组中各个样本必须再逐个化验;若混合样本达标,则原水池的污水直接排放.
现有以下四种方案,
方案一:逐个化验;
方案二:平均分成两组化验;
方案三:三个样本混在一起化验,剩下的一个单独化验;
方案四:混在一起化验.
化验次数的期望值越小,则方案的越“优”.
(Ⅰ) 若$p=\frac{2}{{\sqrt{5}}}$,求2个A级水样本混合化验结果不达标的概率;
(Ⅱ) 若$p=\frac{2}{{\sqrt{5}}}$,现有4个A级水样本需要化验,请问:方案一,二,四中哪个最“优”?
(Ⅲ) 若“方案三”比“方案四”更“优”,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a=$\frac{1}{2}$cos8°-$\frac{\sqrt{3}}{2}$sin8°,b=$\frac{2tan14°}{1-ta{n}^{2}14°}$,c=$\sqrt{\frac{1-cos48°}{2}}$;则有(  )
A.a<c<bB.a<b<cC.c<b<aD.b<c<a

查看答案和解析>>

同步练习册答案