精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=ax+logax(a>0,且a≠1).
(1)若f(5a-3)>f(3a),求实数a的取值范围;
(2)若a=2
①求证:f(x)的零点在($\frac{1}{4}$,$\frac{1}{2}$)上;
②求证:对任意λ>0,存在μ>0,使f(x)<0在(0,λμ)上恒成立.

分析 (1)讨论a的范围,得出f(x)的单调性,利用单调性和定义域列出不等式组解出a的范围;
(2)①利用零点的存在性定理证明;
②利用f(x)的单调性和f($\frac{1}{4}$)<0即可得出结论.

解答 解:(1)f(x)的定义域为(0,+∞),
若a>1,则f(x)为增函数,
∴$\left\{\begin{array}{l}{5a-3>3a}\\{5a-3>0}\\{3a>0}\end{array}\right.$,解得a>$\frac{3}{2}$,
若0<a<1,则f(x)为减函数,
∴$\left\{\begin{array}{l}{5a-3<3a}\\{5a-3>0}\\{3a>0}\end{array}\right.$,解得$\frac{3}{5}$<a<1.
∴a的取值范围是($\frac{3}{5}$,1)∪($\frac{3}{2}$,+∞).
(2)证明:①当a=2时,f(x)=2x+log2x,∴f(x)是增函数.
又∵f($\frac{1}{4}$)=2${\;}^{\frac{1}{4}}$+log2$\frac{1}{4}$=2${\;}^{\frac{1}{4}}$-2<0,f($\frac{1}{2}$)=2${\;}^{\frac{1}{2}}$+log2$\frac{1}{2}$=$\sqrt{2}$-1>0,
∴f(x)在($\frac{1}{4}$,$\frac{1}{2}$)上存在唯一一个零点.
②由①知f($\frac{1}{4}$)<0,又f(x)是增函数,
∴f(x)<0在(0,$\frac{1}{4}$)上恒成立,
∴对任意λ>0,总存在μ>0,使得λμ=$\frac{1}{4}$,∴f(x)<0在(0,λμ)上恒成立.

点评 本题考查了指数函数,对数函数的性质,函数单调性的应用,零点的存在性定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知集合A={-1,a},B={-1,b},且A∪B={-1,-2,3},则ab=(  )
A.-6B.-1C.1D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥P-ABCD中,底面ABCD是菱形,$∠BAD=\frac{π}{3}$,PA=PD,F为AD的中点,PD⊥BF.
(1)求证:AD⊥PB;
(2)若菱形ABCD的边长为6,PA=5,求四面体PBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.古有苏秦、张仪唇枪舌剑驰骋于乱世之秋,今看我一中学子论天、论地、指点江山.现在高二某班需从甲、乙、丙、丁、戊五位同学中,选出四位同学组成重庆一中“口才季”中的一个辩论队,根据他们的文化、思维水平,分别担任一辩、二辩、三辩、四辩,其中四辩必须由甲或乙担任,而丙与丁不能担任一辩,则不同组队方式有(  )
A.12种B.16种C.20种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)是定义在[m,n]上的函数,记F(x)=f(x)-(ax+b),|F(x)|的最大值为M(a,b).若存在m≤x1<x2<x3≤n,满足|F(x1)|=M(a,b),F(x2)=-F(x1).F(x3)=F(x1),则称一次函数y=ax+b是f(x)的“逼近函数”,此时的M(a,b)称为f(x)在[m,n]上的“逼近确界”.
(1)验证:y=4x-1是g(x)=2x2,x∈[0,2]的“逼近函数”;
(2)已知f(x)=$\sqrt{x}$,x∈[0,4],F(0)=F(4)=-M(a,b).若y=ax+b是f(x)的“逼近函数”,求a,b的值;
(3)已知f(x)=$\sqrt{x}$,x∈[0,4]的逼近确界为$\frac{1}{4}$,求证:对任意常数a,b,M(a,b)≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.作函数y=|1g|x-1||的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数$f(x)=6-12x+{x^3},x∈[-\frac{1}{3},1]$的最值以及对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a<0<b,且$\frac{1}{a}>-\frac{1}{b}$,则下列不等式:①|b|>|a|;②a+b>0;③$\frac{b}{a}+\frac{a}{b}<-2$;④$a>2b-\frac{a^2}{b}$中,正确的不等式有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,Sn=2an-1,{bn}是等差数列,且b1=a1,b4=a3
(1)求数列{an}和{bn}的通项公式;
(2)若${c_n}=\frac{2}{a_n}-\frac{1}{{{b_n}{b_{n+1}}}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案