·ÖÎö £¨1£©Óɶ¨ÀíÇóµÃÇÐÏß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉ¡÷=0£¬ÔòÖ±Ïßl£ºx+y=2ÊÇÔÚPµãµÄÍÖÔ²µÄÇÐÏߣ»
£¨2£©¢ÙÓɶ¨ÀíÇóµÃPµãµÄÇÐÏß·½³Ì£¬¼´¿ÉÇóµÃOQµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃQµã×ø±ê£¬¼´¿ÉÇóµÃØOQØ£¬ÔòlÓëÖ±ÏßOQÖ®¼äµÄ¾àÀëd£¬¼´¿ÉÇóµÃ¡÷OPQµÄÃæ»ý£»
¢ÚÓÉkPQ=kPM£¬¼´¿ÉÇóµÃm£¬ÓÉ3=x02+3y02£¼£¨x0+$\sqrt{3}$y0£©2¡Ü2£¨x02+3y02£©=6£¬¼´¿ÉÇóµÃmµÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©Óɵ㣨x0£¬y0£©ÔÚÍÖÔ²$\frac{{x}^{2}}{3}$+y2=1ÉÏ£¬ÔòÍÖÔ²Ôڸõ㴦µÄÇÐÏß·½³ÌΪ$\frac{{x}_{0}x}{3}$+y0y=1£®
ÈôP£¨$\frac{3}{2}$£¬$\frac{1}{2}$£©£¬Ôò$\frac{\frac{3}{2}x}{3}+\frac{1}{2}y=1$£¬ÕûÀíµÃ£ºÖ±Ïßl£ºx+y=2£¬
ÓÉ$\left\{\begin{array}{l}{y=2-x}\\{\frac{{x}^{2}}{3}+{y}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º4x2-12x+9=0£¬
¡÷=£¨12£©2-4¡Á4¡Á9=0£¬
¡àÖ±Ïßl£ºx+y=2ÊÇÍÖÔ²µÄÇÐÏߣ»
£¨2£©¢ÙÉèP£¨x0£¬y0£©£¬Ôòx02+3y02=1£¬ÇÒÇÐÏßl£º$\frac{{x}_{0}x}{3}$+y0y=1£®
ÔòOQ£ºx0x+3y0y=0£¬$\left\{\begin{array}{l}{{x}_{0}x+3{y}_{0}y=0}\\{{x}^{2}+3{y}^{2}=3}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{x=-\sqrt{3}{y}_{0}}\\{y=\frac{\sqrt{3}}{3}{x}_{0}}\end{array}\right.$£¬$\left\{\begin{array}{l}{x=\sqrt{3}{y}_{0}}\\{y=-\frac{\sqrt{3}}{3}{x}_{0}}\end{array}\right.$
ÓÉQÔÚxÖáÉÏ·½£¬ÔòQ£¨-$\sqrt{3}$y0£¬$\frac{\sqrt{3}}{3}$x0£©£¬
ÔòØOQØ=$\sqrt{3{y}_{0}^{2}+\frac{1}{3}{x}_{0}^{2}}$=$\sqrt{\frac{{x}_{0}^{2}+9{y}_{0}^{2}}{3}}$£¬
ÓÉlÓëÖ±ÏßOQÖ®¼äµÄ¾àÀëd=$\frac{3}{\sqrt{{x}_{0}^{2}+9{y}_{0}^{2}}}$£¬
ÓÉ¡÷OPQµÄÃæ»ýS=$\frac{1}{2}$¡ÁØOQØ¡Ád=$\frac{\sqrt{3}}{2}$£¬
¢ÚÉèÖ±ÏßPQ½»yÖáµãM£¨0£¬m£©£¬ÓÉP£¨x0£¬y0£©£¬Q£¨-$\sqrt{3}$y0£¬$\frac{\sqrt{3}}{3}$x0£©£¬x0x+3y0y=0£¬
ÓÉkPQ=kPM£¬Ôò$\frac{{y}_{0}-\frac{\sqrt{3}}{3}{x}_{0}}{{x}_{0}+\sqrt{3}{y}_{0}}$=$\frac{{y}_{0}-m}{{x}_{0}}$£¬
Ôòm=y0-$\frac{{x}_{0}{y}_{0}-\frac{\sqrt{3}}{3}{x}_{0}^{2}}{{x}_{0}+\sqrt{3}{y}_{0}}$=$\frac{\sqrt{3}}{{x}_{0}+\sqrt{3}{y}_{0}}$£¬
3=x02+3y02£¼£¨x0+$\sqrt{3}$y0£©2¡Ü2£¨x02+3y02£©=6£¬
¹Êm=$\frac{\sqrt{3}}{{x}_{0}+\sqrt{3}{y}_{0}}$¡Ê[$\frac{\sqrt{2}}{2}$£¬1£©£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄÇÐÏß·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Á½µãÖ®¼äµÄ¾àÀ빫ʽ£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{¦Ð}{12}$ | B£® | $\frac{¦Ð}{8}$ | C£® | $\frac{¦Ð}{6}$ | D£® | $\frac{¦Ð}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -2 | B£® | 2 | C£® | 8 | D£® | -8 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com