10£®Èçͼ£¬P£¨x0£¬y0£©ÊÇÍÖÔ²$\frac{{x}^{2}}{3}$+y2=1µÄÉϵĵ㣬lÊÇÍÖÔ²ÔÚµãP´¦µÄÇÐÏߣ¬OÊÇ×ø±êÔ­µã£¬OQ¡ÎlÓëÍÖÔ²µÄÒ»¸ö½»µãÊÇQ£¬P£¬Q¶¼ÔÚxÖáÉÏ·½
£¨1£©µ±Pµã×ø±êΪ£¨$\frac{3}{2}$£¬$\frac{1}{2}$£©Ê±£¬ÀûÓÃÌâºó¶¨Àíд³ölµÄ·½³Ì£¬²¢ÑéÖ¤lÈ·¶¨ÊÇÍÖÔ²µÄÇÐÏߣ»
£¨2£©µ±µãPÔÚµÚÒ»ÏóÏÞÔ˶¯Ê±£¨¿ÉÒÔÖ±½ÓÓ¦Óö¨Àí£©
¢ÙÇó¡÷OPQµÄÃæ»ý
¢ÚÇóÖ±ÏßPQÔÚyÖáÉϵĽؾàµÄȡֵ·¶Î§£®
¶¨Àí£ºÈôµã£¨x0£¬y0£©ÔÚÍÖÔ²$\frac{{x}^{2}}{3}$+y2=1ÉÏ£¬ÔòÍÖÔ²Ôڸõ㴦µÄÇÐÏß·½³ÌΪ$\frac{{x}_{0}x}{3}$+y0y=1£®

·ÖÎö £¨1£©Óɶ¨ÀíÇóµÃÇÐÏß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉ¡÷=0£¬ÔòÖ±Ïßl£ºx+y=2ÊÇÔÚPµãµÄÍÖÔ²µÄÇÐÏߣ»
£¨2£©¢ÙÓɶ¨ÀíÇóµÃPµãµÄÇÐÏß·½³Ì£¬¼´¿ÉÇóµÃOQµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃQµã×ø±ê£¬¼´¿ÉÇóµÃØ­OQØ­£¬ÔòlÓëÖ±ÏßOQÖ®¼äµÄ¾àÀëd£¬¼´¿ÉÇóµÃ¡÷OPQµÄÃæ»ý£»
¢ÚÓÉkPQ=kPM£¬¼´¿ÉÇóµÃm£¬ÓÉ3=x02+3y02£¼£¨x0+$\sqrt{3}$y0£©2¡Ü2£¨x02+3y02£©=6£¬¼´¿ÉÇóµÃmµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©Óɵ㣨x0£¬y0£©ÔÚÍÖÔ²$\frac{{x}^{2}}{3}$+y2=1ÉÏ£¬ÔòÍÖÔ²Ôڸõ㴦µÄÇÐÏß·½³ÌΪ$\frac{{x}_{0}x}{3}$+y0y=1£®
ÈôP£¨$\frac{3}{2}$£¬$\frac{1}{2}$£©£¬Ôò$\frac{\frac{3}{2}x}{3}+\frac{1}{2}y=1$£¬ÕûÀíµÃ£ºÖ±Ïßl£ºx+y=2£¬
ÓÉ$\left\{\begin{array}{l}{y=2-x}\\{\frac{{x}^{2}}{3}+{y}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º4x2-12x+9=0£¬
¡÷=£¨12£©2-4¡Á4¡Á9=0£¬
¡àÖ±Ïßl£ºx+y=2ÊÇÍÖÔ²µÄÇÐÏߣ»
£¨2£©¢ÙÉèP£¨x0£¬y0£©£¬Ôòx02+3y02=1£¬ÇÒÇÐÏßl£º$\frac{{x}_{0}x}{3}$+y0y=1£®
ÔòOQ£ºx0x+3y0y=0£¬$\left\{\begin{array}{l}{{x}_{0}x+3{y}_{0}y=0}\\{{x}^{2}+3{y}^{2}=3}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{x=-\sqrt{3}{y}_{0}}\\{y=\frac{\sqrt{3}}{3}{x}_{0}}\end{array}\right.$£¬$\left\{\begin{array}{l}{x=\sqrt{3}{y}_{0}}\\{y=-\frac{\sqrt{3}}{3}{x}_{0}}\end{array}\right.$
ÓÉQÔÚxÖáÉÏ·½£¬ÔòQ£¨-$\sqrt{3}$y0£¬$\frac{\sqrt{3}}{3}$x0£©£¬
ÔòØ­OQØ­=$\sqrt{3{y}_{0}^{2}+\frac{1}{3}{x}_{0}^{2}}$=$\sqrt{\frac{{x}_{0}^{2}+9{y}_{0}^{2}}{3}}$£¬
ÓÉlÓëÖ±ÏßOQÖ®¼äµÄ¾àÀëd=$\frac{3}{\sqrt{{x}_{0}^{2}+9{y}_{0}^{2}}}$£¬
ÓÉ¡÷OPQµÄÃæ»ýS=$\frac{1}{2}$¡ÁØ­OQØ­¡Ád=$\frac{\sqrt{3}}{2}$£¬
¢ÚÉèÖ±ÏßPQ½»yÖáµãM£¨0£¬m£©£¬ÓÉP£¨x0£¬y0£©£¬Q£¨-$\sqrt{3}$y0£¬$\frac{\sqrt{3}}{3}$x0£©£¬x0x+3y0y=0£¬
ÓÉkPQ=kPM£¬Ôò$\frac{{y}_{0}-\frac{\sqrt{3}}{3}{x}_{0}}{{x}_{0}+\sqrt{3}{y}_{0}}$=$\frac{{y}_{0}-m}{{x}_{0}}$£¬
Ôòm=y0-$\frac{{x}_{0}{y}_{0}-\frac{\sqrt{3}}{3}{x}_{0}^{2}}{{x}_{0}+\sqrt{3}{y}_{0}}$=$\frac{\sqrt{3}}{{x}_{0}+\sqrt{3}{y}_{0}}$£¬
3=x02+3y02£¼£¨x0+$\sqrt{3}$y0£©2¡Ü2£¨x02+3y02£©=6£¬
¹Êm=$\frac{\sqrt{3}}{{x}_{0}+\sqrt{3}{y}_{0}}$¡Ê[$\frac{\sqrt{2}}{2}$£¬1£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄÇÐÏß·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Á½µãÖ®¼äµÄ¾àÀ빫ʽ£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚ[m£¬n]Éϵĺ¯Êý£¬¼ÇF£¨x£©=f£¨x£©-£¨ax+b£©£¬|F£¨x£©|µÄ×î´óֵΪM£¨a£¬b£©£®Èô´æÔÚm¡Üx1£¼x2£¼x3¡Ün£¬Âú×ã|F£¨x1£©|=M£¨a£¬b£©£¬F£¨x2£©=-F£¨x1£©£®F£¨x3£©=F£¨x1£©£¬Ôò³ÆÒ»´Îº¯Êýy=ax+bÊÇf£¨x£©µÄ¡°±Æ½üº¯Êý¡±£¬´ËʱµÄM£¨a£¬b£©³ÆÎªf£¨x£©ÔÚ[m£¬n]Éϵġ°±Æ½üÈ·½ç¡±£®
£¨1£©ÑéÖ¤£ºy=4x-1ÊÇg£¨x£©=2x2£¬x¡Ê[0£¬2]µÄ¡°±Æ½üº¯Êý¡±£»
£¨2£©ÒÑÖªf£¨x£©=$\sqrt{x}$£¬x¡Ê[0£¬4]£¬F£¨0£©=F£¨4£©=-M£¨a£¬b£©£®Èôy=ax+bÊÇf£¨x£©µÄ¡°±Æ½üº¯Êý¡±£¬Çóa£¬bµÄÖµ£»
£¨3£©ÒÑÖªf£¨x£©=$\sqrt{x}$£¬x¡Ê[0£¬4]µÄ±Æ½üÈ·½çΪ$\frac{1}{4}$£¬ÇóÖ¤£º¶ÔÈÎÒâ³£Êýa£¬b£¬M£¨a£¬b£©¡Ý$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªËæ»ú±äÁ¿X¡«B£¨9£¬$\frac{2}{3}$£©£¬Y=2X-1£¬ÔòD£¨Y£©=8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èôa£¾0£¬b£¾0£¬ÇÒ2a+b=1£¬Ôò2$\sqrt{ab}$-4a2-b2µÄ×î´óÖµÊÇ$\frac{\sqrt{2}-1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®¾­¹ýÔ²x2+2x+y2=0µÄÔ²ÐÄ£¬ÇÒÓëÖ±Ïßx+y-2=0´¹Ö±µÄÖ±Ïß·½³ÌÊÇx-y+1=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Sn=2an-1£¬{bn}ÊǵȲîÊýÁУ¬ÇÒb1=a1£¬b4=a3£®
£¨1£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨2£©Èô${c_n}=\frac{2}{a_n}-\frac{1}{{{b_n}{b_{n+1}}}}$£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®½«º¯Êý$y=sin£¨{¦Øx+¦Õ}£©£¨{¦Ø£¾0£¬|¦Õ|£¼\frac{¦Ð}{2}}£©$µÄͼÏóÑØxÖáÏò×óÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»³¤¶È£¬µÃµ½º¯Êý$y=cos£¨{2x+\frac{¦Ð}{4}}£©$µÄͼÏó£¬Ôò¦Õ=£¨¡¡¡¡£©
A£®$\frac{¦Ð}{12}$B£®$\frac{¦Ð}{8}$C£®$\frac{¦Ð}{6}$D£®$\frac{¦Ð}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=cos£¨x+ϕ£©£¨-¦Ð£¼ϕ£¼0£©£¬g£¨x£©=f£¨x£©+f'£¨x£©ÊÇżº¯Êý£®
£¨¢ñ£©ÇóϕµÄÖµ£»
£¨¢ò£©Çóº¯Êýy=f£¨x£©•g£¨x£©ÔÚÇø¼ä$[{0£¬\frac{¦Ð}{2}}]$µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÔÚ¡÷ABCÖУ¬$\overrightarrow{AB}¡Í\overrightarrow{AC}$£¬$\overrightarrow{AB}=£¨1£¬-2£©$£¬$\overrightarrow{AC}=£¨4£¬¦Ë£©$£¬Ôò¦Ë=£¨¡¡¡¡£©
A£®-2B£®2C£®8D£®-8

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸