精英家教网 > 高中数学 > 题目详情
2.将函数$y=sin({ωx+φ})({ω>0,|φ|<\frac{π}{2}})$的图象沿x轴向左平移$\frac{π}{3}$个单位长度,得到函数$y=cos({2x+\frac{π}{4}})$的图象,则φ=(  )
A.$\frac{π}{12}$B.$\frac{π}{8}$C.$\frac{π}{6}$D.$\frac{π}{4}$

分析 根据函数y=Asin(ωx+φ)的图象变换规律、诱导公式,可得ω=2,$\frac{2π}{3}$+φ-$\frac{π}{2}$=2kπ+$\frac{π}{4}$,由此求得φ的值.

解答 解:将函数$y=sin({ωx+φ})({ω>0,|φ|<\frac{π}{2}})$的图象沿x轴向左平移$\frac{π}{3}$个单位长度,
得到函数y=sin[ω(x+$\frac{π}{3}$)+φ]=sin(ωx+$\frac{ωπ}{3}$+φ)=cos(ωx+$\frac{ωπ}{3}$+φ-$\frac{π}{2}$)=cos(2x+$\frac{π}{4}$)的图象,
则ω=2,∴$\frac{2π}{3}$+φ-$\frac{π}{2}$=2kπ+$\frac{π}{4}$,k∈Z.
令k=0,可得φ=$\frac{π}{12}$,
故选:A.

点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.化简:
(1)sin(-α)cos(-α-π)tan(2π+α);
(2)$\frac{sin(180°+α)cos(-α)}{tan(-α)}$;
(3)$\frac{cos(α+π)sin(-α)}{cos(-3π-α)sin(-α-4π)}$;
(4)sin2(-α)+tan(2π+α)cos2(π+α).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=lnx-ax+$\frac{1-a}{x}$-1(a∈R).
(Ⅰ)当a=-1时,求曲线y=f(x)在(2,f(2))处的切线方程;
(Ⅱ)当0≤a≤$\frac{1}{2}$时,试讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,P(x0,y0)是椭圆$\frac{{x}^{2}}{3}$+y2=1的上的点,l是椭圆在点P处的切线,O是坐标原点,OQ∥l与椭圆的一个交点是Q,P,Q都在x轴上方
(1)当P点坐标为($\frac{3}{2}$,$\frac{1}{2}$)时,利用题后定理写出l的方程,并验证l确定是椭圆的切线;
(2)当点P在第一象限运动时(可以直接应用定理)
①求△OPQ的面积
②求直线PQ在y轴上的截距的取值范围.
定理:若点(x0,y0)在椭圆$\frac{{x}^{2}}{3}$+y2=1上,则椭圆在该点处的切线方程为$\frac{{x}_{0}x}{3}$+y0y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱台ABCD-A1B1C1D1中,底面ABCD为平行四边形,∠BAD=120°,M为CD上的点.且∠A1AB=∠A1AD=90°,AD=A1A=2,A1B1=DM=1.
(1)求证:AM⊥A1B;
(2)若M为CD的中点,N为棱DD1上的点,且MN与平面A1BD所成角的正弦值为$\frac{1}{{\sqrt{35}}}$,试求DN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.随机变量X服从正态分布(3,σ2),且P(X≤4)=0.84,则P(2<X<4)=(  )
A.0.16B.0.32C.0.68D.0.84

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设A(0,1),B(1,3),C(-1,5),D(0,-1),则$\overrightarrow{AB}+\overrightarrow{AC}$等于(  )
A.-2$\overrightarrow{AD}$B.2$\overrightarrow{AD}$C.-3$\overrightarrow{AD}$D.3$\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.$\int_2^4{\frac{1}{x}dx}$等于(  )
A.-21n 2B.21n 2C.-ln 2D.ln 2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{a}$=(cosα,1),$\overrightarrow{b}$=(1,-$\frac{1}{2}$+sinα),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则sin2α=-$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案