精英家教网 > 高中数学 > 题目详情
13.已知椭圆W:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右两个焦点为F1,F2,且|F1F2|=2,椭圆上一动点P满足|PF1|+|PF2|=2$\sqrt{3}$.
(Ⅰ)求椭圆W的标准方程及离心率;
(Ⅱ)如图,过点F1作直线l1与椭圆W交于点A,C,过点F2作直线l2⊥l1,且l2与椭圆W交于点B,D,l1与l2交于点E,试求四边形ABCD面积的最大值.

分析 (Ⅰ)由椭圆的定义及焦距|F1F2|=2c=2,求得a和c的值,则b2=a2-c2=2,即可求得椭圆的方程及离心率.
(Ⅱ)当直线的斜率不存在时,由S=$\frac{1}{2}$丨AC丨•丨BD丨=4,当直线斜率存在时,设直线方程,代入椭圆方程,由韦达定理及弦长公式分别求得丨AC丨,丨BD丨根据函数的单调性即可求得四边形ABCD面积的最大值.

解答 解:(Ⅰ)由题意可知:|F1F2|=2c=2,c=1,2a=|PF1|+|PF2|=2$\sqrt{3}$,a=$\sqrt{3}$,
b2=a2-c2=2,离心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$,
∴椭圆的标准方程为:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$;
(Ⅱ)当直线l2⊥l1,当斜率不存在时,EF1⊥EF2,此时求得丨EO丨=$\frac{1}{2}$丨F1F2丨=1,
∴E点轨迹为以原点为圆心,半径为1的圆,显然点E在椭圆W上内部,
∴四边形ABCD面积S=S△ABC+S△ADC=$\frac{1}{2}$丨AC丨•丨BE丨+$\frac{1}{2}$丨AC丨•丨DE丨=$\frac{1}{2}$丨AC丨•丨BD丨,
将x=-1代入椭圆方程,求得y=±$\frac{2\sqrt{3}}{3}$,此时丨BD丨=$\frac{4\sqrt{3}}{3}$,丨AC丨=2$\sqrt{3}$,
则四边形ABCD面积S=$\frac{1}{2}$丨AC丨•丨BD丨=4,
当直线l2,l1都存在时,设直线l1,x=my-1,(m≠0),
设A(x1,y1),B(x2,y2),
$\left\{\begin{array}{l}{x=my-1}\\{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,整理得:(2m2+3)y2-4my-4=0,
则y1+y2=$\frac{4m}{2{m}^{2}+3}$,y1y2=-$\frac{4}{2{m}^{2}+3}$,
则丨AC丨=$\sqrt{1+{m}^{2}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{4\sqrt{3}({m}^{2}+1)}{2{m}^{2}+3}$,
同理直线l1,x=-$\frac{1}{m}$x+1,同理求得丨BD丨=$\frac{4\sqrt{3}({m}^{2}+1)}{2+3{m}^{2}}$,
∴四边形ABCD面积S=$\frac{1}{2}$丨AC丨•丨BD丨=$\frac{1}{2}$×$\frac{4\sqrt{3}({m}^{2}+1)}{2{m}^{2}+3}$×$\frac{4\sqrt{3}({m}^{2}+1)}{2+3{m}^{2}}$,
=$\frac{24({m}^{2}+1)^{2}}{(2{m}^{2}+3)(3{m}^{2}+2)}$,
=$\frac{24({m}^{4}+2{m}^{2}+1)}{6{m}^{4}+13{m}^{2}+6}$=4×$\frac{6{m}^{4}+12{m}^{2}+6}{6{m}^{4}+13{m}^{2}+6}$,
=4(1-$\frac{{m}^{2}}{6{m}^{4}+13{m}^{2}+6}$)<4,
综上可知四边形ABCD面积的最大值4,此时直线l2,l1一条为椭圆的长轴,一条与x轴垂直.

点评 本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查韦达定理,弦长公式,考查函数的单调性及椭圆的综合应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.向如图所示的边长为2的正方形区域内任投一点,则该点落入阴影部分的概率为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.为响应“精确扶贫”号召,某企业计划每年用不超过100万元的资金购买单价分别为1500元/箱和3000元/箱的A、B两种药品捐献给贫困地区某医院,其中A药品至少100箱,B药品箱数不少于A药品箱数.则该企业捐献给医院的两种药品总箱数最多可为(  )
A.200B.350C.400D.500

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,有一个水平放置的透明无盖的正三棱柱容器,其中侧棱长为8cm,底面边长为12cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时,测得水深为6cm,如果不计容器的厚度,则球的表面积为(  )
A.36πcm2B.64πcm2C.80πcm2D.100πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点$(0,\sqrt{2})$,且离心率为$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A,B是椭圆C的左,右顶点,P为椭圆上异于A,B的一点,以原点O为端点分别作与直线AP和BP平行的射线,交椭圆C于M,N两点,求证:△OMN的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.向量$\overrightarrow m=({λ+1,1}),\overrightarrow n=({λ+3,2})$,若$\overrightarrow m∥\overrightarrow n$,则λ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.民大附中的甲、乙两人同时参加某大学的自主招生,在申请材料中提交了某学科10次的考试成绩(满分100分),按照时间顺序记录如下:

(1)根据两组数据画出两人成绩的茎叶图,并通过茎叶图比较两人成绩的平均值及分散程度(不要求计算具体值,直接写出结论即可);
(2)现将两人成绩分为三个等级:
成绩分数[0,70][70,90][90,100]
等级C级B级A级
注:A级高于B级,B级高于C级
假设两人的成绩相互独立,根据所给的数据,以事件发生的频率为相应事件发生的概率,求甲的等级高于乙的等级的概率;
(3)假如你是该大学的招生老师,结合上述数据,决定应录取哪位同学,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|2x>1},集合B={x||x|≤2},则A∩B=(  )
A.(0,2]B.[0,2]C.[-2,2]D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,四棱锥VABCD的底面为边长等于2cm的正方形,顶点V与底面正方形中心的连线为棱锥的高,侧棱长VC=4cm,求这个正四棱锥的体积.

查看答案和解析>>

同步练习册答案