精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=xex,现有下列五种说法:
①函数f(x)为奇函数;
②函数f(x)的减区间为(-∞,1),增区间为(1,+∞);
③函数f(x)的图象在x=0处的切线的斜率为1;
④函数f(x)的最小值为$-\frac{1}{e}$.
其中说法正确的序号是③④(请写出所有正确说法的序号).

分析 根据奇函数的定义判断①,求出函数的导数,得到函数的单调区间,判断②③④即可.

解答 解:①f(-x)=(-x)•$\frac{1}{{e}^{x}}$≠-f(x),不是奇函数,故①错误;
②f′(x)=(1+x)ex
当x∈(-∞,-1)时,f′(x)<0,当x∈(-1,+∞)时,f′(x)>0,
∴f(x)的单调递增区间为(-1,+∞),单调递减区间为(-∞,-1),
故②错误;
③∵f′(x)=(1+x)ex,∴f′(0)=1,
即函数f(x)的图象在x=0处的切线的斜率为1;
故③正确;
④f(x)的单调递增区间为(-1,+∞),单调递减区间为(-∞,-1),
∴f(x)的最小值是f(-1)=-$\frac{1}{e}$,
故④正确;
故答案为:③④.

点评 本题考查了利用导研究函数的单调性极值与最值问题,考查函数的奇偶性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知集合M={0,1,2},P={-2,-1,0,1,2},Z为整数集,则-2∈(  )
A.MB.PMC.M∩PD.ZP

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数 f(x)=sinx-xcosx.现有下列结论:
①f(x)是R 上的奇函数;
②f(x)在[π,2π]上是增函数;
③?x∈[0,π],f(x)≥0.
其中正确结论的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在R上的函数f(x)满足:f(-1)=4,f′(x)<1-f(x),f′(x)是f(x)的导函数,则不等式ex+1f(x)>ex+1+3(其中e为自然对数的底数)的解集为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)的定义域为[-1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示,
 x-1 0 2 4 5
 f(x) 1 2 1.5 2 1
下列关于函数f(x)的命题:
①函数f(x)的值域为[1,2];
②如果当x∈[-1,t]时,f(x)的最大值为2,那么t的最大值为4;
③函数f(x)在[0,2]上是减函数;
④当1<a<2时,函数y=f(x)-a最多有4个零点.
其中正确命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-ax2,a∈R.
(1)求y=f(x)的单调区间;
(2)若曲线y=f(x)与直线y=x-1只有一个交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=eax(ax-2)(a>0);
(1)求函数的单调区间与极值:
(2)设g(x)=f($\frac{2}{a}$-x),求证:当x>$\frac{1}{a}$,f(x)>g(x);
(3)若f(x)的图象与直线L:y=t有两个不同的交点A,B,AB中点为C(x0,y0);
(i)求t的取值范围(可直接写出结果,不必书写过程);
(ii)求证:f′(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知全集U=R,集合A={x|-1<x<3},B={x|0<x<5},求A∩B,(∁UA)∪B,A∩(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数$f(x)={log_3}(\frac{1+x}{1-x})$,则$f(\frac{1}{2})$=1,y=f(x)的图象关于原点对称.

查看答案和解析>>

同步练习册答案