精英家教网 > 高中数学 > 题目详情
5.已知集合M={0,1,2},P={-2,-1,0,1,2},Z为整数集,则-2∈(  )
A.MB.PMC.M∩PD.ZP

分析 化简∁PM={-2,-1},从而判断.

解答 解:∁PM={-2,-1},
故-2∈∁PM;
故选B.

点评 本题考查了集合的运算及元素与集合的关系应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知sinx=2cosx,则$\frac{5sinx-cosx}{2sinx+cosx}$=(  )
A.$\frac{6}{5}$B.$\frac{9}{5}$C.$\frac{8}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U={x|x2-2x-3≤0},集合M={y|x2+y2=1},则∁UM=(  )
A.(-∞,-1)∪(1,+∞)B.(1,3]C.[-1,1]D.[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z满足z(i+1)=$\frac{2}{i-1}$,则复数z的虚部为(  )
A.-1B.0C.iD.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.以下结论:
①函数y=sin(kπ-x),(k∈Z)为奇函数;
②函数$y=tan({2x+\frac{π}{6}})$的图象关于点$({\frac{π}{12},0})$对称;
③函数$y=cos({2x+\frac{π}{3}})$的图象的一条对称轴为$x=-\frac{2}{3}π$;
④函数$y=2sin(x-\frac{π}{3}),x∈[{0,2π}]$的单调递减区间是$[{\frac{5π}{6},\frac{11π}{6}}]$;
⑤存在实数x,使sinx+cosx=2;
其中正确结论的序号为①,③,④.(多选、少选、选错均不得分).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=$\frac{1}{3}{x^3}-a{x^2}-3{a^2}$x+1(a>0)
(1)求f′(x)的表达式
(2)求f(x)的单调区间、极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若{an}为等差数列,Sn是其前n项的和,且${S_{11}}=\frac{22}{3}π,\{{b_n}\}$为等比数列,且bn>0,${b_5}•{b_7}=\frac{π^2}{4}$,则tan(a6+b6)的值为(  )
A.$\sqrt{3}$B.$±\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.±$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax+lnx,其中a∈R.
(Ⅰ)若f(x)在区间[1,2]上为增函数,求a的取值范围;
(Ⅱ)当a=-e时,
(ⅰ)证明:f(x)+2≤0;
(ⅱ)试方程|f(x)|=$\frac{lnx}{x}$+$\frac{3}{2}$是否有实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=xex,现有下列五种说法:
①函数f(x)为奇函数;
②函数f(x)的减区间为(-∞,1),增区间为(1,+∞);
③函数f(x)的图象在x=0处的切线的斜率为1;
④函数f(x)的最小值为$-\frac{1}{e}$.
其中说法正确的序号是③④(请写出所有正确说法的序号).

查看答案和解析>>

同步练习册答案