精英家教网 > 高中数学 > 题目详情
4.设$f(x)=\frac{{a{x^2}+bx+1}}{{{e^{x-1}}}}$,已知x=-1和x=1为f(x)的极值点.
(1)求a和b的值;
(2)讨论f(x)的单调性并求其最小值.

分析 (1)先求导,再根据x=-1和x=1为f(x)的极值点,代入继而求出a,b的值,
(2)根据导数函数的单调性和最值的关系即可求出.

解答 解:(I)因为$f'(x)=\frac{{-a{x^2}+(2a-b)x+b-1}}{{{e^{x-1}}}}$,
又x=-1和x=1为f(x)的极值点,
所以f'(-1)=f'(1)=0…(2分)
因为$\left\{{\begin{array}{l}{-3a+2b-1=0}\\{a-1=0}\end{array}}\right.$
解方程组得a=1,b=2. …(6分)
(2)因为a=1,b=2,
所以$f(x)=\frac{{{x^2}+2x+1}}{{{e^{x-1}}}}$,$f'(x)=\frac{{1-{x^2}}}{{{e^{x-1}}}}$,…(7分)
令f′(x)=0,解得x1=-1,x2=1.…(8分)
因为当x∈(-∞,-1)∪(1,+∞)时,f′(x)<0;
当x∈(-1,1)时,f′(x)>0,…(10分)
所以f(x)在(-1,1)上是单调递增的;
在(-∞,-1)和(1,+∞)上是单调递减的.…(11分)
又因为当x>0时,f(x)>0恒成立.
∴$f{(x)_{min}}=f(-1)=\frac{{{{(-1)}^2}+2(-1)+1}}{{{e^{-1-1}}}}=0$…(13分)

点评 本题考查了导数和函数的单调性极值最值的关系,关键是求导,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设定义在(1,e)上的函数f(x)=$\sqrt{lnx+4x-a}$(a∈R),若曲线y=1+sinx上存在(x0,y0)使得f(f(y0))=y0,则a的取值范围(  )
A.(-∞,4+ln2]B.(3,4]C.(3,4+ln2]D.(2,ln2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.三棱锥的三视图如图所示,则该三棱锥的体积为$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足(an+1-1)(an-1)=3(an-an+1),a1=2,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列四组函数中,表示同一函数的是(  )
A.y=$\sqrt{{x}^{2}}$与y=xB.y=x0与y=1
C.y=2${\;}^{lo{g}_{4}x}$与y=$\frac{x}{\sqrt{x}}$D.y=x与y=($\sqrt{x})^{2}$2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数a,b,c,d满足(b+2a2-6lna)2+|2c-d+6|=0,(a-c)2+(b-d)2的最小值为m,则函数f(x)=ex+$\frac{1}{5}$mx-3零点所在的区间为(  )
A.$({-\frac{1}{4},0})$B.$({0,\frac{1}{4}})$C.$({\frac{1}{4},\frac{1}{2}})$D.$({\frac{1}{2},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.对定义在区间D上的函数f(x)和g(x),如果对任意x∈D,都有|f(x)-g(x)|≤1成立,那么称函数f(x)在区间D上可被G(X)替代,D称为“替代区间”.给出以下命题:
①f(x)=x2+1在区间(-∞,+∞)上可被g(x)=x2$+\frac{1}{2}$替代;
②f(x)=x可被g(x)=1-$\frac{1}{4x}$替代的一个“替代区间”为[$\frac{1}{4}$,$\frac{3}{2}$];
③f(x)=lnx在区间[1,e]可被g(x)=x-b替代,则e-2≤b≤2;
④f(x)=lg(ax2+x)(x∈D1),g(x)=sinx(x∈D2),则存在实数a(a≠0),使得f(x)在区间D1∩D2 上被g(x)替代;
其中真命题的有①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知角α的终边在直线y=-3x上,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x${\;}^{2}+x+ln\frac{1}{x-a}$在x=0处取得极值.
(1)求实数a的值;
(2)若关于x的方程f(x)=$\frac{5}{2}$x-b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围.
(3)证明:对任意的正整数n,不等式2+$\frac{3}{4}+\frac{4}{9}+…+\frac{n+1}{{n}^{2}}$>ln(n+1)都成立.

查看答案和解析>>

同步练习册答案