精英家教网 > 高中数学 > 题目详情

已知各项都不相等的等差数列的前6项和为60,且的等比中项.
(1) 求数列的通项公式;
(2) 若数列满足,且,求数列的前项和.

(1) ;(2)

解析试题分析:(1) 求数列的通项公式,因为是等差数列,故只需求出即可,由已知前6项和为60,且的等比中项,可得,解方程组得,从而可得数列的通项公式;(2) 求数列的前项和,首先求出数列的通项公式,由已知数列满足,且,可用迭代法(或叠加法)求出数列的通项公式,从而得,求数列的前项和,可用拆项相消法求和.
试题解析:(1) 设等差数列的公差为(),
                       2分
解得                                        4分
.                                     5分
(2) 由
,                     6分

 
.             8分
                10分
.      12分
考点:等差数列的通项公式,数列求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知各项都不相等的等差数列{an}的前6项和为60,且a6为a1和a21的等比中项.
(1)求数列{an}的通项公式.
(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=3,求数列{}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(x-1)2g(x)=4(x-1),数列{an}是各项均不为0的等差数列,其前n项和为Sn,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足b1=2,bn≠1,且(bnbn+1g(bn)=f(bn)(n∈N).
(1)求an并证明数列{bn-1}是等比数列;
(2)若数列{cn}满足cn,证明:c1c2c3+…+cn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公差不为零的等差数列{an}的前4项和为10,且a2a3a7成等比数列.
(1)求通项公式an
(2)设bn=2an,求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,数列满足:
(1)求数列的通项公式
(2)求数列的通项公式;(3)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列的各项均为正数,,前项和为为等比数列, ,且 
(1)求
(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足:
(Ⅰ)求的通项公式及前项和
(Ⅱ)若等比数列的前项和为,且,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{}的首项a1=1,公差d>0,且分别是等比数列{}的b2,b3,b4
(I)求数列{}与{{}的通项公式;
(Ⅱ)设数列{}对任意自然数n均有成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,.
(1)证明:数列是等比数列,并求数列的通项公式;
(2)在数列中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(3)若,求证:使得成等差数列的点列在某一直线上.

查看答案和解析>>

同步练习册答案