7£®Èçͼ£¬Õý·½ÐÎABCDµÄ±ß³¤Îª2£¬OΪADµÄÖе㣬ÉäÏßOP´ÓOA³ö·¢£¬ÈÆ×ŵãO˳ʱÕë·½ÏòÐýתÖÁOD£¬ÔÚÐýתµÄ¹ý³ÌÖУ¬¼Ç¡ÏAOPΪx£¨x¡Ê[0£¬¦Ð]£©£¬OPËù¾­¹ýµÄÔÚÕý·½ÐÎABCDÄÚµÄÇøÓò£¨ÒõÓ°²¿·Ö£©µÄÃæ»ýS=f£¨x£©£¬ÄÇô¶ÔÓÚº¯Êýf£¨x£©ÓÐÒÔÏÂÈý¸ö½áÂÛ£º
¢Ùf£¨$\frac{¦Ð}{3}$£©=$\frac{\sqrt{3}}{2}$£»
¢Úº¯Êýf£¨x£©ÔÚÇø¼ä$£¨\frac{¦Ð}{2}£¬¦Ð£©$ÉÏΪ¼õº¯Êý£»
¢ÛÈÎÒâ$x¡Ê[0£¬\frac{¦Ð}{2}]$£¬¶¼ÓÐf£¨x£©+f£¨¦Ð-x£©=4£®
ÆäÖÐËùÓÐÕýÈ·½áÂÛµÄÐòºÅÊÇ¢Ù¢Û£®

·ÖÎö ÓÉͼÐοɵ㺵±0¡Üx¡Üarctan2ʱ£¬f£¨x£©=$\frac{1}{2}$tanx£»µ±arctan2£¼x£¼$\frac{¦Ð}{2}$£¬f£¨x£©=S¾ØÐÎOABM-S¡÷OME=2-$\frac{2}{tanx}$£»µ±x=$\frac{¦Ð}{2}$ʱ£¬f£¨x£©=2£»µ± $\frac{¦Ð}{2}$£¼x¡Ü¦Ð-arctan2ʱ£¬f£¨x£©=2-$\frac{2}{tanx}$£®µ±¦Ð-arctan2£¼x¡Ü¦Ðʱ£¬f£¨x£©=4+$\frac{1}{2}$tanx£®¼´¿ÉÅжϳö£®

½â´ð ½â£ºµ±0¡Üx¡Üarctan2ʱ£¬f£¨x£©=$\frac{1}{2}$tanx£»
µ±arctan2£¼x£¼$\frac{¦Ð}{2}$£¬ÔÚ¡÷OBEÖУ¬f£¨x£©=S¾ØÐÎOABM-S¡÷OME=2-$\frac{1}{2}$EM•OM=2-$\frac{2}{tanx}$£»
µ±x=$\frac{¦Ð}{2}$ʱ£¬f£¨x£©=2£»
µ± $\frac{¦Ð}{2}$£¼x¡Ü¦Ð-arctan2ʱ£¬Í¬Àí¿ÉµÃf£¨x£©=2-$\frac{2}{tanx}$£®
µ±¦Ð-arctan2£¼x¡Ü¦Ðʱ£¬f£¨x£©=4-$\frac{1}{2}$¡Á1¡Átan£¨¦Ð-x£©=4+$\frac{1}{2}$tanx£®ÓÚÊǿɵãº
¢Ùf£¨$\frac{¦Ð}{3}$£©=$\frac{1}{2}•tan\frac{¦Ð}{3}$=$\frac{\sqrt{3}}{2}$£¬ÕýÈ·£»
¢Úµ± $\frac{¦Ð}{2}$£¼x¡Ü¦Ð-arctan2ʱ£¬ÓÉf£¨x£©=2-$\frac{2}{tanx}$£¬ÎªÔöº¯Êý£®µ±¦Ð-arctan2£¼x¡Ü¦Ðʱ£¬f£¨x£©=4+$\frac{1}{2}$tanx£¬ÎªÔöº¯Êý£¬Òò´Ë²»ÕýÈ·£®
¢Û?x¡Ê$[0£¬\frac{¦Ð}{2}]$£¬ÓÉͼÐμ°ÆäÉÏÃæ£¬ÀûÓöԳÆÐԿɵãºf£¨x£©+f£¨¦Ð-x£©=4£¬Òò´ËÕýÈ·£»
¹Ê´ð°¸Îª£º¢Ù¢Û£®

µãÆÀ ±¾Ì⿼²éÁËͼÐÎÃæ»ýµÄ¼ÆËã¡¢ÕýÇк¯ÊýµÄµ¥µ÷ÐÔ¡¢¼òÒ×Âß¼­µÄÅж¨£¬¿¼²éÁË·ÖÀàÌÖÂÛ˼Ïë·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÔÚÕýËÄÀą̂ABCD-A1B1C1D1ÖУ¬A1B1=a£¬AB=2a£¬$A{A_1}=\sqrt{2}a$£¬E¡¢F·Ö±ðÊÇAD¡¢ABµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæEFB1D1¡ÎÆ½ÃæBDC1£»
£¨¢ò£©ÇóÖ¤£ºA1C¡ÍÆ½ÃæBDC1£®
×¢£ºµ×ÃæÎªÕý·½ÐΣ¬´Ó¶¥µãÏòµ×Ãæ×÷´¹Ïߣ¬´¹×ãÊǵ×ÃæÖÐÐÄ£¬ÕâÑùµÄËÄÀâ×¶½Ð×öÕýËÄÀâ×¶£®ÓÃÒ»¸öƽÐÐÓÚÕýËÄÀâ×¶µ×ÃæµÄÆ½ÃæÈ¥½Ø¸ÃÀâ×¶£¬µ×ÃæÓë½ØÃæÖ®¼äµÄ²¿·Ö½Ð×öÕýËÄÀą̂£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªsin£¨x+$\frac{¦Ð}{6}$£©=$\frac{3}{5}$£¬Çósin2£¨$\frac{¦Ð}{3}$-x£©-sin£¨$\frac{5¦Ð}{6}$-x£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ËÄÀâ×¶P-ABCDµÄµ×ÃæABCDÊÇÆ½ÐÐËıßÐΣ¬¡ÏDAB=60¡ã£¬AB=2AD=2£¬PD¡ÍÆ½ÃæABCD£®
£¨¢ñ£©ÇóÖ¤£ºAD¡ÍPB£»
£¨¢ò£©ÈôBDÓëÆ½ÃæPBCµÄËù³É½ÇΪ30¡ã£¬Çó¶þÃæ½ÇP-BC-DµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®¸´Êý$\frac{10i}{3+i}$=1+3i£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªsin¦Á=$\frac{2\sqrt{5}}{5}$£¬¦Á¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬Ôòtan2¦Á=£¨¡¡¡¡£©
A£®-$\frac{4}{3}$B£®$\frac{4}{3}$C£®-$\frac{1}{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®¹ØÓÚxµÄ·½³Ì|log2x|-a=0µÄÁ½¸ö¸ùΪx1£¬x2£¨x1£¼x2£©£¬Ôò2x1+x2µÄ×îСֵΪ2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÊýÁÐ{an}£¬{bn}µÄ¸÷Ïî¾ùΪÕýÊý£¬ÇÒ¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐbn£¬an£¬bn+1³ÉµÈ²îÊýÁУ®an£¬bn+1£¬an+1³ÉµÈ±ÈÊýÁУ¬ÇÒb1=6£¬b2=12£®
£¨I£©ÇóÖ¤ÊýÁÐ$\left\{{\sqrt{a_n}}\right\}$ÊǵȲîÊýÁУ¬²¢Çóan£»
£¨¢ò£©ÉèTn=$\frac{{2}^{\sqrt{{a}_{1}}}•{b}_{1}}{2}+\frac{{2}^{\sqrt{{a}_{2}}}•{b}_{2}}{3}+¡­+\frac{{2}^{\sqrt{{a}_{n}}}•{b}_{n}}{n+1}$£¬ÇóTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èç¹ûÖ±½ÇÈý½ÇÐεÄÈýÌõ±ßµÄ³¤¶È³ÉµÈ²îÊýÁУ¬Çҽϳ¤µÄÖ±½Ç±ßµÄ³¤¶ÈΪa£¬Çó½Ï¶ÌÖ±½Ç±ßºÍб±ßµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸