精英家教网 > 高中数学 > 题目详情
6.在四面体ABCD中,AB⊥AD,AB=AD=BC=CD=1,且平面ABD⊥平面BCD,M为AB中点,则CM与平面ABD所成角的正弦值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{6}}}{3}$

分析 如图所示,取BD的中点O,连接OA,OC,利用等腰三角形的性质可得OA⊥BD,OC⊥BD.又平面ABD⊥平面BCD,可得OA⊥平面BCD,OA⊥OC.建立空间直角坐标系.又AB⊥AD,可得DB=$\sqrt{2}$.取平面ABD的法向量$\overrightarrow{n}$=(1,0,0),CM与平面ABD所成角的正弦值=$\frac{|\overrightarrow{n}•\overrightarrow{MC}|}{|\overrightarrow{n}||\overrightarrow{MC}|}$.

解答 解:如图所示,取BD的中点O,连接OA,OC,
∵AB=AD=BC=CD=1,∴OA⊥BD,OC⊥BD.
又平面ABD⊥平面BCD,∴OA⊥平面BCD,OA⊥OC.
建立空间直角坐标系.又AB⊥AD,∴DB=$\sqrt{2}$.
∴O(0,0,0),A(0,0,$\frac{\sqrt{2}}{2}$),B(0,$\frac{\sqrt{2}}{2}$,0),M(0,$\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{4}$),C($\frac{\sqrt{2}}{2}$,0,0).
∴$\overrightarrow{MC}$=(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{4}$).
取平面ABD的法向量$\overrightarrow{n}$=(1,0,0),
∴CM与平面ABD所成角的正弦值=$\frac{|\overrightarrow{n}•\overrightarrow{MC}|}{|\overrightarrow{n}||\overrightarrow{MC}|}$=$\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=$\frac{\sqrt{6}}{3}$.
故选:D.

点评 本题考查了空间线面位置关系、向量夹角公式、等腰三角形的性质,考查了数形结合方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足2acosB=2c-b.
(1)求角A的大小;
(2)若c=2b,求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知矩阵M=$[\begin{array}{l}{1}&{b}\\{c}&{2}\end{array}]$有特征值λ1=4及对应的一个特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{2}\\{3}\end{array}]$,则直线2x-y+3=0在矩阵M对应的变换作用下的直线方程是7x-5y-12=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,∠C=$\frac{π}{2}$,AC=BC,M,N分别是BC、AB的中点,沿直线MN将△BMN折起使点B到达B′,且∠B′MB=$\frac{π}{3}$,则B′A与平面ABC所成角的正切值为(  )
A.$\frac{\sqrt{2}}{5}$B.$\frac{\sqrt{3}}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=2sin($\frac{π}{3}+\frac{π}{6}$)(-$\frac{1}{2}<x<\frac{11}{2}$)的图象与x轴交于点A,过A的直线l与函数f(x)的图象交于B,C两点,则($\overrightarrow{OB}+\overrightarrow{OC}$)$•\overrightarrow{OA}$=(  )
A.25B.-$\frac{25}{2}$C.$\frac{25}{2}$D.-25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某种证件的获取规则是:参加科目A和科目B的考试,每个科目考试的成绩分为合格与不合格,每个科目最多只有2次考试机会,且参加科目A考试的成绩为合格后,才能参加科目B的考试;参加某科目考试的成绩为合格后,不再参加该科目的考试,参加两个科目考试的成绩均为合格才能获得该证件.现有一人想获取该证件,已知此人每次参加科目A考试的成绩为合格的概率是$\frac{2}{3}$,每次参加科目B考试的成绩为合格的概率是$\frac{1}{2}$,且各次考试的成绩为合格与不合格均互不影响.假设此人不放弃按规则所给的所有考试机会,记他参加考试的次数为X.
(Ⅰ)求X的所有可能取的值;
(Ⅱ)求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.盒中共有9个球,其中有3个红球、4个黄球和2个白球,这些球除颜色外完全相同.
(Ⅰ)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;
(Ⅱ)从盒中一次随机取出4个球,设X为取出的4个球中红色的个数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知极坐标系与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴为正半轴,曲线C1的直角坐标方程为$\frac{{x}^{2}}{3}+{y}^{2}$=1,直线l的直角坐标方程为x+y-4=0,曲线C2的极坐标方程为$ρ=\frac{1}{1-cosθ}$.
(Ⅰ)在曲线C1上求一点P,使得点P到直线l的距离最大;
(Ⅱ)过极点O作互相垂直的两条直线分别交曲线C2于A,B和C,D四点,求|AB|+|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.从5名男生和4名女生中选出4人参加辩论比赛,如果4人中男生和女生各两人,则不同的选法种数为60.

查看答案和解析>>

同步练习册答案