精英家教网 > 高中数学 > 题目详情
16.从5名男生和4名女生中选出4人参加辩论比赛,如果4人中男生和女生各两人,则不同的选法种数为60.

分析 利用组合知识,结合乘法原理,可得结论

解答 解:∵从5名男生和4名女生中选出4人参加学校辩论赛,
∴4人中男生和女生各选2人,共有${C}_{5}^{2}{C}_{4}^{2}$=60种方法,
故答案为60.

点评 本题考查组合知识,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在四面体ABCD中,AB⊥AD,AB=AD=BC=CD=1,且平面ABD⊥平面BCD,M为AB中点,则CM与平面ABD所成角的正弦值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某单位进行了主题为“你幸福吗”的幸福指数问卷调查,得到每个调查对象的幸福指数评分值(百分制).现从收到的调查表中随机抽取20份进行统计,得到如图所示的频率分布表和频率分布直方图.
(Ⅰ)请完成题目中的频率分布表,并补全题目中的频率分布直方图;
(Ⅱ)该单位将随机邀请被问卷调查的部分员工参加“幸福教育”的座谈会.在抽样统计的这20人中,已知幸福指数评分值在区间(80,100]的5人中有2人被邀请参加座谈,求其中幸福指数评分值在区间(80,90]的仅有1人被邀请的概率.
幸福指数评分值频数频率
[50,60]
(60,70]
(70,80]
(80,90]3
(90,100]
合  计201

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=90°,PA⊥面ABCD,若PA=AB=BC=$\frac{1}{2}$AD.
(1)求证:CD⊥平面PAC;
(2)侧棱PA上中点E,求证:BE∥平面PCD;
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在极坐标系Ox中,曲线C1的方程为ρ=2sinθ,C2的方程为ρ=8sinθ,射线θ=$\frac{π}{3}$与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某产品的广告费用x(万元)与销售额y(百万元)的统计数据如表:
 广告费用x(万元) 1 2 3 4 5 6 7
 销售额y(百万元)2.9 3.3 3.6 4.4 4.8 5.2 5.9 
根据上表可得回归方程$\widehat{y}$=$\widehat{b}x+\widehat{a}$中的$\widehat{a}$为2.3,据此模型预报广告费用为12万元时销售额为8.3百万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛掷两枚质地均匀的骰子,向上的点数之和为7的概率是(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{18}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线y2=2px(p>0)过点(4,4),它的焦点F,倾斜角为$\frac{π}{3}$的直线l过点F且与抛物线两交点为A,B,点A在第一象限内.
(1)求抛物线和直线l的方程;
(2)求|AF|:|BF|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在三角形△ABC中,角A,B,C所对的边分别为a,b,c且A=60°,B=45°,c=20,则a=30$\sqrt{2}$-10$\sqrt{6}$.

查看答案和解析>>

同步练习册答案