精英家教网 > 高中数学 > 题目详情
12.曲线f(x)=xlnx在点P(1,0)处的切线l与两坐标轴围成的三角形的面积是$\frac{1}{2}$.

分析 求出函数的导数,利用导数的几何意义求出切线的斜率,由点斜式方程可得切线方程,计算切线与坐标轴的交点坐标,即可得出三角形面积.

解答 解:f′(x)=lnx+x•$\frac{1}{x}$=lnx+1,
∴在点P(1,0)处的切线斜率为k=1,
∴在点P(1,0)处的切线l为y-0=x-1,即y=x-1,
∵y=x-1与坐标轴交于(0,-1),(1,0).
∴切线y=x-1与坐标轴围成的三角形面积为S=$\frac{1}{2}$×1×1=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了导数的运用:求切线的方程,考查导数的几何意义,以及三角形的面积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知圆C:x2+y2+2x-8y+m=0与抛物线上E:y2=8x的准线l相切,抛物线E上的点P到准线l的距离为d,Q为圆C上任意一点,则|PQ|+d的最小值等于(  )
A.3B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某市为了了解全民健身运动开展的效果,选择甲、乙两个相似的小区作对比,一年前在甲小区利用体育彩票基金建设了健身广场,一年后分别在两小区采用简单随机抽样的方法抽取20人作为样本,进行身体综合素质测试,测试得分分数的茎叶图(其中十位为茎,个们为叶)如图:
(1)求甲小区和乙小区的中位数;
(2)身体综合素质测试成绩在60分以上(含60)的人称为“身体综合素质良好”,否则称为“身体综合素质一般”.以样本中的频率作为概率,两小区人口都按1000人计算,填写下列2×2列联表,
甲小区(有健康广场)乙小区(无健康广场)合计
身体综合素质良好350300650
身体综合素质一般6507001350
合计100010002000
并判断是否有97.5%把握认为“身体综合素质良好”与“小区是否建设健身广场”有关?
P(K2>k)0.100.050.0250.010.005
k01.7063.8415.0246.6357.879
(附:k=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|0<x<2},集合B={x|-1<x<1},则A∪B等于(  )
A.{x|0<x<1}B.{x|-1<x<2}C.{x|0<x<2}D.{x|-1<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点M(-3,-1),若函数y=tan$\frac{π}{4}$x(x∈(-2,2))的图象与直线y=1交于点A,则|MA|=2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题中真命题的个数是(  )
①若p∧q是假命题,则p,q都是假命题;
②命题“?x∈R,x3-x2+1≤0”的否定是“?x0∈R,x03-x02+1>0”;
③若p:x≤1,q:$\frac{1}{x}$<1,则¬p是q的充分不必要条件.
④设随机变量X服从正态分布N(3,7),若P(X>C+1)=P(X<C-1),则C=3.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x3+1,g(x)=2(log2x2-2log2x+t-4,若函数F(x)=f(g(x))-1在区间[1,2$\sqrt{2}$]上恰有两个不同的零点,则实数t的取值范围(  )
A.[$\frac{5}{2}$,4]B.[$\frac{5}{2}$,$\frac{9}{2}$)C.[4,$\frac{9}{2}$)D.[4,$\frac{9}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.6名同学合影留念,站成两排三列,则其中甲乙两人不在同一排也不在同一列的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{4}{9}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若双曲线$\frac{x^2}{3-m}+\frac{y^2}{m-1}=1$的渐近线方程为$y=±\frac{1}{2}x$,则m的值为(  )
A.-1B.$\frac{1}{3}$C.$\frac{11}{3}$D.-1或$\frac{1}{3}$

查看答案和解析>>

同步练习册答案