精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\frac{2}{{2}^{x}+1}$+sinx,求f(-2)+f(-1)+f(0)+f(1)+f(2)的值.

分析 根据条件求出函数f(x)+f(-x)=2,进行求解即可.

解答 解:∵f(x)+f(-x)=$\frac{2}{{{2^x}+1}}+sinx+\frac{2}{{{2^{-x}}+1}}-sinx=\frac{2}{{{2^x}+1}}+\frac{{{2^{x+1}}}}{{1+{2^x}}}=2$,且f(0)=1,
∴f(-2)+f(-1)+f(0)+f(1)+f(2)=5.

点评 本题主要考查函数值的计算,根据条件求出f(x)+f(-x)=2是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知直线l过点(1,0)和点($0,\sqrt{3}$),则直线l的倾斜角的大小是(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中若A=45°,a=$\sqrt{3}$,则$\frac{a+b}{sinA+sinB}$等于$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知随机变量ξ+η=8,若ξB(10,0.4),则E(η),D(η)分别是(  )
A.4和2.4B.2和2.4C.6和2.4D.4和5.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知抛物线y2=4x与双曲线$\frac{x^2}{a^2}-{y^2}=1$的一个交点为M,F为抛物线的焦点,若MF=3,则该双曲线的离心率为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,x>0}\\{{2^x},x<0}\end{array}}\right.$,则f(f(-1))的值等于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2+ax+b(a,b∈R),g(x)=2x2-4x-16,且|f(x)|≤|g(x)|对x∈R恒成立.
(1)求a、b的值;
(2)记h(x)=-$\frac{1}{2}$f(x)-4,那么当k≥$\frac{1}{2}$时,是否存在区间[m,n](m<n),使得函数h(x)在区间[m,n]上的值域恰好为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在正四棱锥S-ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP∥BD;②EP⊥AC;③EP⊥面SAC;④EP∥面SBD中恒成立的为(  )
A.②④B.③④C.①②D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实数x,y满足$\left\{\begin{array}{l}x+y-4≤0\\ 2x-y+1≥0\\ x+4y-4≥0\end{array}\right.$,则z=2|x-4|+|y-3|的取值范围是[3,10].

查看答案和解析>>

同步练习册答案