精英家教网 > 高中数学 > 题目详情
8.已知4个数成等差数列,它们的和为20,中间两项之积为24,求这个4个数.

分析 由题意可设:设此四个数分别为:a-3d,a-d,a+d,a+3d.可得:a-3d+a-d+a+d+a+3d=20,(a-d)(a+d)=24.解出即可得出.

解答 解:设此四个数分别为:a-3d,a-d,a+d,a+3d.
由题意可得:a-3d+a-d+a+d+a+3d=20,(a-d)(a+d)=24.
解得a=5,d=±1.
∴这四数为2,4,6,8或8,6,4,2.

点评 本题考查了等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,AC1是正方体ABCD-A1B1C1D1的对角线.
(1)求证:平面A1BD∥平面CD1B1
(2)求证:直线AC1⊥直线BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知点P是圆O外一点,过P做圆O的切线PA,PB,切点分别为A,B,过P做一条割线交圆O于E,F,若2PA=PF,取PF的中点D,连接AD,并延长交圆于H.
(1)求证:四点O,A,P,B共圆;
(2)求证:PB2=2ED×DF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若奇函数f(x)在[1,3]上是增函数,且最小值是1,则它在[-3,-1]上是(  )
A.增函数,最小值-1B.增函数,最大值-1C.减函数,最小值-1D.减函数,最大值-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)在极坐标系中,求过极点,倾斜角是$\frac{π}{3}$的直线的极坐标方程
(2)在极坐标系中,求圆心在$({3,\frac{π}{2}})$,半径为3的圆的极坐标方程
(3)曲线C的极坐标方程为:ρ=2cosθ-4sinθ,求曲线C的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若椭圆$\frac{{y}^{2}}{100}+\frac{{x}^{2}}{36}$=1上一点P到焦点F1的距离等于6,点P到另一个焦点F2的距离是(  )
A.20B.14C.4D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列4个命题:
①命题“若x2-x=0,则x=1”的逆否命题为“若x≠1,则x2-x≠0”;
②若“?p或q”是假命题,则“p且?q”是真命题;
③若p:x(x-2)≤0,q:log2x≤1,则p是q的必要不充分条件;
④若命题p:存在x∈R,使得2x<x2,则?p:任意x∈R,均有2x≥x2
其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知抛物线y2=8x的焦点为F,准线为l,点P为抛物线上一点,且在第一象限,PA⊥l,垂足为A,|PF|=4,则直线AF倾斜角为135°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b,a+b成等差数列,a,b,ab成等比数列,且$0<10{log_m}^{({ab})}<1$,则m的取值范围是(  )
A.m>1B.1<m<8C.m>8D.0<m<1或 m>8

查看答案和解析>>

同步练习册答案