精英家教网 > 高中数学 > 题目详情
正方形ABCD与ABEF的边长都为a,若二面角E-AB-C的大小为30°,则EF与平面ABCD的距离为
 
考点:点、线、面间的距离计算
专题:空间位置关系与距离
分析:EF与平面ABCD的距离即为点到到平面ABCD的距离.
解答: 解:如图,作EO⊥平面ABCD,连结BO,
∵二面角E-AB-C的大小为30°,
正方形ABCD与ABEF的边长都为a,
∴∠EBO=30°,BE=a,
∴EF与平面ABCD的距离即为点到到平面ABCD的距离EO,
∵EO=
1
2
BE=
1
2
a

∴EF与平面ABCD的距离为
1
2
a

故答案为:
1
2
a
点评:本题考查直线到平面的距离的求法,是中档题,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4-1×(2-
2
0+9 
1
2
×2-2+(
1
2
 -
1
2
-
2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2x+c(a,c∈R)满足条件:①f(1)=0;②对一切x∈R,都有f(x)≥0.
(1)求f(x)的解析式;
(2)是否存在实数m,使函数g(x)=f(x)-4mx在区间[m,m+2]上有最小值-20?若存在,请求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(2x-
π
6
)在区间[0,
π
3
]的值域
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+bx的图象在点(1,-3)处的切线的方程为y=-2x-1.
(1)若对任意x∈[
1
3
,+∞)有f(x)≤m恒成立,求实数m的取值范围;
(2)若函数y=f(x)+x2+2在区间[k,+∞)内有零点,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设(1+x)n=a0+a1x+…+anxn,若展开式中系数最大的项的系数是70,则a1+a2+‥‥+an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
sin70°+sin50°
sin80°
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β∈(0,
π
2
),α+β≠
π
2
a
=(sinα,sinβ)与
b
=(cos(α+β),-1),
a
b
,当tanβ取最大值时,求tan(α+β)

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线C:mx2-y2=1(m为常数)的一条渐近线与直线l:y=-3x-1垂直,则双曲线C的焦距为
 

查看答案和解析>>

同步练习册答案