ÒÑÖªº¯Êýf£¨x£©=ax+b£¬µ±x¡Ê[a1£¬b1]ʱֵÓòΪ[a2£¬b2]£¬µ±x¡Ê[a2£¬b2]ʱֵÓòΪ[a3£¬b3]£¬µ±x¡Ê[an-1£¬bn-1]ʱֵÓòΪ[an£¬bn]¡­ÆäÖÐa¡¢bΪ³£Êý£¬a1=0£¬b1=1
£¨1£©Èôa=1£¬b=2£¬ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£®
£¨2£©Èôa£¾0£¬a¡Ù1£¬ÒªÊ¹ÊýÁÐ{bn}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ¬ÇóbµÄÖµ£®
£¨3£©Èôa£¾0£¬ÉèÊýÁÐ{an}ºÍ{bn}µÄÇ°nÏîºÍ·Ö±ðΪSnºÍTn£¬ÇóTn-SnµÄÖµ£®
·ÖÎö£º£¨1£©ÓÉa=1£¬b=2£¬¿ÉµÃf£¨x£©=x+2£®º¯Êýf£¨x£©µ¥µ÷µÝÔö£¬ÇÒµ±x¡Ê[an-1£¬bn-1]ʱֵÓòΪ[an£¬bn]£®
¿ÉµÃµ±n¡Ý2ʱ£¬an=f£¨an-1£©=an-1+2£¬bn=f£¨bn-1£©=bn-1+2£¬ÓÉa1¼°b1£¬ÀûÓõȲîÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£®
£¨2£©µ±a£¾0ʱ£¬º¯Êýf£¨x£©=ax+bµ¥µ÷µÝÔö£¬¿ÉµÃµ±n¡Ý2ʱ£¬bn=f£¨bn-1£©=abn-1+b£¬£¨*£©
ÒòΪµ±bn=bn-1ʱ£¬bn=1£¬b=1-a£¬¹Êb¡Ù1-a£¨a£¾0£¬a¡Ù1£©£¬ÔÙÀûÓÃÊýÁÐ{bn}µÄ¹«±ÈΪq£¬b1=1£¬¶ÔÓÚ£¨*£©·Ö±ðÈ¡n=2£¬3¿ÉµÃ
q=a+b
q2=aq+b
¼´¿É½âµÃbµÄÖµ£®
£¨3£©µ±a£¾0ʱ£¬º¯Êýf£¨x£©=ax+bµ¥µ÷µÝÔö£¬¿ÉµÃµ±n¡Ý2ʱ£¬an=f£¨an-1£©=aan-1+b£¬bn=f£¨bn-1£©=abn-1+b£¬
¢Ùµ±a=1ʱ£¬an=0+£¨n-1£©•b£¬bn=1+£¨n-1£©b£¬ÓÉbn-an=1¼´¿ÉµÃ³öTn-Sn£®
¢Úµ±a¡Ù1ʱ£¬ÓÉan+
b
a-1
=a(an-1+
b
a-1
)
£¬bn+
b
a-1
=a(bn-1+
b
a-1
)
£¬
¿ÉµÃan+
b
a-1
=
b
a-1
an-1
£¬bn+
b
a-1
=(1+
b
a-1
)•an-1
£¬¿ÉµÃbn-an=an-1£¬ÓÚÊÇTn-Sn=1+a+a2+¡­+an-1£®
½â´ð£º½â£º£¨1£©¡ßa=1£¬b=2£¬¡àf£¨x£©=x+2£¬
¡ßº¯Êýf£¨x£©µ¥µ÷µÝÔö£¬ÇÒµ±x¡Ê[an-1£¬bn-1]ʱֵÓòΪ[an£¬bn]£®
¡àµ±n¡Ý2ʱ£¬an=f£¨an-1£©=an-1+2£¬bn=f£¨bn-1£©=bn-1+2£¬
ÓÖa1=0£¬b1=1£¬
¡àan=0+£¨n-1£©¡Á2=2n-2£¬bn=1+£¨n-1£©¡Á2=2n-1£®
¼´an=2n-2£¬bn=2n-1£®
£¨2£©µ±a£¾0ʱ£¬º¯Êýf£¨x£©=ax+bµ¥µ÷µÝÔö£¬¡àµ±n¡Ý2ʱ£¬bn=f£¨bn-1£©=abn-1+b£¬£¨*£©
µ±bn=bn-1ʱ£¬bn=1£¬b=1-a£¬
Òò´Ëb¡Ù1-a£¨a£¾0£¬a¡Ù1£©£®
ÉèÊýÁÐ{bn}µÄ¹«±ÈΪq£¬ÓÖb1=1£¬¶ÔÓÚ£¨*£©·Ö±ðÈ¡n=2£¬3¿ÉµÃ
q=a+b
q2=aq+b

»¯Îªb£¨a+b-1£©=0£¬¶øa+b-1¡Ù0£¬¡àb=0£®
¹Êµ±b=0ʱÊýÁÐ{bn}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ®
Òò´Ëb=0£®
£¨3£©µ±a£¾0ʱ£¬º¯Êýf£¨x£©=ax+bµ¥µ÷µÝÔö£¬
¡àµ±n¡Ý2ʱ£¬an=f£¨an-1£©=aan-1+b£¬bn=f£¨bn-1£©=abn-1+b£¬
¢Ùµ±a=1ʱ£¬an=0+£¨n-1£©•b£¬bn=1+£¨n-1£©b£¬
¡àTn-Sn=1+1+¡­+1=n£®
¢Úµ±a¡Ù1ʱ£¬ÓÉan+
b
a-1
=a(an-1+
b
a-1
)
£¬bn+
b
a-1
=a(bn-1+
b
a-1
)
£¬
¿ÉµÃan+
b
a-1
=
b
a-1
an-1
£¬bn+
b
a-1
=(1+
b
a-1
)•an-1
£¬
¡à¿ÉµÃbn-an=an-1£¬
¡àTn-Sn=1+a+a2+¡­+an-1=
an-1
a-1
£®
×ÛÉÏ¿ÉÖª£ºµ±a=1ʱ£¬Tn-Sn=n£»
µ±a¡Ù1ʱ£¬Tn-Sn=
an-1
a-1
£®
µãÆÀ£ºÊìÁ·ÕÆÎÕÒ»´Îº¯ÊýµÄµ¥µ÷ÐÔ¡¢µÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¼°ÆäÇ°nÏîºÍ¹«Ê½¡¢·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨ÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
a-x2
x
+lnx  (a¡ÊR £¬ x¡Ê[
1
2
 £¬ 2])

£¨1£©µ±a¡Ê[-2£¬
1
4
)
ʱ£¬Çóf£¨x£©µÄ×î´óÖµ£»
£¨2£©Éèg£¨x£©=[f£¨x£©-lnx]•x2£¬kÊÇg£¨x£©Í¼ÏóÉϲ»Í¬Á½µãµÄÁ¬ÏßµÄбÂÊ£¬·ñ´æÔÚʵÊýa£¬Ê¹µÃk¡Ü1ºã³ÉÁ¢£¿Èô´æÔÚ£¬ÇóaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•º£µíÇø¶þÄ££©ÒÑÖªº¯Êýf£¨x£©=a-2xµÄͼÏó¹ýÔ­µã£¬Ôò²»µÈʽf(x)£¾
34
µÄ½â¼¯Îª
£¨-¡Þ£¬-2£©
£¨-¡Þ£¬-2£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=a|x|µÄͼÏó¾­¹ýµã£¨1£¬3£©£¬½â²»µÈʽf(
2x
)£¾3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=a•2x+b•3x£¬ÆäÖг£Êýa£¬bÂú×ãa•b¡Ù0
£¨1£©Èôa•b£¾0£¬ÅжϺ¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Èôa=-3b£¬Çóf£¨x+1£©£¾f£¨x£©Ê±µÄxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=a-2|x|+1£¨a¡Ù0£©£¬¶¨Ò庯ÊýF£¨x£©=
f(x)   £¬  x£¾0
-f(x) £¬    x£¼0
 ¸ø³öÏÂÁÐÃüÌ⣺¢ÙF£¨x£©=|f£¨x£©|£» ¢Úº¯ÊýF£¨x£©ÊÇÆ溯Êý£»¢Ûµ±a£¼0ʱ£¬Èômn£¼0£¬m+n£¾0£¬×ÜÓÐF£¨m£©+F£¨n£©£¼0³ÉÁ¢£¬ÆäÖÐËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸