精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=1n2x-kx在定义域内单递减,求实数k的取值范围.

分析 若函数f(x)=1n2x-kx在定义域内单递减,只需f′(x)<0在(0,+∞)恒成立,解关于导函数的不等式即可.

解答 解:函数f(x)的定义域是(0,+∞),
f′(x)=$\frac{2lnx}{x}$-k,
f″(x)=$\frac{2(1-lnx)}{{x}^{2}}$,
令f″(x)>0,解得:x<e,令f″(x)<0,解得:x>e,
∴f′(x)在(0,e)递增,在(e,+∞)递减,
∴f′(x)最大值=f′(e)=$\frac{2}{e}$-k,
若函数f(x)=1n2x-kx在定义域内单递减,
则f′(e)=$\frac{2}{e}$-k<0,解得:k>$\frac{2}{e}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x-alnx+$\frac{1-a}{x}$(a∈R),g(x)=x-1.
(Ⅰ)若函数f(x)在x=2处取得极值,求实数a的值;
(Ⅱ)是否存在a∈(3,+∞),对任意x1$∈[\frac{1}{e},1]$,总存在x2$∈[\frac{1}{e},1]$,使得g(x1)=f(x2)成立.若存在,求出a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3a4=117,a2+a5=22.
(1)求{an}的通项公式.
(2)等差数列{bn}的通项公式为bn=$\frac{{S}_{n}}{n+c}$,求非零常数c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若x是log24和1og28的等差中项,则x=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的前项和为Sn,a1=2,S3=S6,试求数列{an}的前多少项的和最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.(1-$\frac{1}{a}$)8的展开式中第7项是(  )
A.$\frac{8}{{a}^{6}}$B.-$\frac{8}{{a}^{6}}$C.$\frac{56}{{a}^{6}}$D.-$\frac{56}{{a}^{6}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx,g(x)=x2-2ax+1,a∈R.
(Ⅰ)设函数h(x)=af(x)+g(x),若h(x)在区间($\frac{1}{2}$,1)上是增函数,求实数a的取值范围.
(Ⅱ)设函数F(x)=f(x)+g(x),若对任意a$∈(1,\sqrt{2}$),都存在x0∈(0,1],使得不等式F(x0)>m(a-a2)-lna成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设△ABC内角A,B,C的对边分别为a,b,c.已知cosA=$\frac{1}{4}$,a=4,b+c=6,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a>1,b>2,且ab=2a+b,则a+b的最小值为(  )
A.2$\sqrt{2}$B.2$\sqrt{2}$+1C.2$\sqrt{2}$+2D.2$\sqrt{2}$+3

查看答案和解析>>

同步练习册答案