10£®ÔÚÖ±½Ç×ø±êϵxOyÖÐÒÑÖªÇúÏßC1£º$\left\{\begin{array}{l}{x=t+1}\\{y=1-2t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÓëÇúÏßC2£º$\left\{\begin{array}{l}{x=asin¦È}\\{y=3cos¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£¬a£¾0£©£®
£¨1£©ÈôÇúÏßC1ÓëC2ÓÐÒ»¹«¹²µãÔÚxÖáÉÏ£¬ÇóaµÄÖµ£»
£¨2£©ÈôÇúÏßC1ÓëC2ÏཻÓÚA£¬BÁ½µã£¬ÇÒ|AB|=$\sqrt{5}$£¬ÇóaµÄÖµ£®

·ÖÎö £¨1£©ÏȰÑÇúÏßC1ºÍÇúÏßC2¶¼»¯ÎªÆÕͨ·½³Ì£¬ÓÉ´ËÄÜÇó³ö½á¹û£®
£¨2£©ÁªÁ¢ÇúÏßC1ºÍÇúÏßC2µÄÆÕͨ·½³Ì£¬ÀûÓÃÏÒ³¤¹«Ê½ÄÜÇó³ö½á¹û£®

½â´ð ½â£º£¨1£©¡ßÇúÏßC1£º$\left\{\begin{array}{l}{x=t+1}\\{y=1-2t}\end{array}\right.$£¨tΪ²ÎÊý£©»¯ÎªÆÕͨ·½³Ì£º2x+y-3=0£¬Áîy=0£¬
¿ÉµÃx=$\frac{3}{2}$£¬
ÇúÏßC2£º$\left\{\begin{array}{l}{x=asin¦È}\\{y=3cos¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£¬a£¾0£©»¯ÎªÆÕͨ·½³Ì£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}$=1
¡ßÁ½ÇúÏßÓÐÒ»¸ö¹«¹²µãÔÚxÖáÉÏ£¬
¡à$\frac{\frac{9}{4}}{{a}^{2}}$=1£¬½âµÃa=$\frac{3}{2}$£®
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{2x+y-3=0}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{9}=1}\end{array}\right.$£¬ÏûÈ¥y£¬µÃ£¨4a2+9£©x2-12a2x=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=\frac{12{a}^{2}}{4{a}^{2}+9}$£¬x1x2=0£¬
¡ß|AB|=$\sqrt{5}$£¬¡à$\sqrt{£¨1+4£©£¨\frac{12{a}^{2}}{4{a}^{2}+9}£©^{2}}$=$\sqrt{5}$£¬
½âµÃa=$\frac{3\sqrt{2}}{4}$»òa=-$\frac{3\sqrt{2}}{4}$£¨Éᣩ£®
¡à$a=\frac{3\sqrt{2}}{4}$£®

µãÆÀ ±¾Ì⿼²éÇúÏß·½³ÌÖвÎÊýÖµµÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»¯ºÍÏÒ³¤¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®µ½¶¨µã£¨2£¬0£©µÄ¾àÀëÓëµ½¶¨Ö±Ïßx=8µÄ¾àÀëÖ®±ÈΪ$\frac{{\sqrt{2}}}{2}$µÄ¶¯µãµÄ¹ì¼£·½³ÌΪx2+2y2+8x-56=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Å×ÎïÏß${x^2}=\frac{1}{4}y$µÄ½¹µãµ½×¼ÏߵľàÀëΪ£¨¡¡¡¡£©
A£®2B£®4C£®$\frac{1}{8}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èçͼ£¬Ô²CÖУ¬ÏÒABµÄ³¤¶ÈΪ4£¬Ôò$\overrightarrow{AB}$•$\overrightarrow{AC}$=£¨¡¡¡¡£©
A£®12B£®8C£®4D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=2£¨sin$\frac{¦Ð}{4}x+cos\frac{¦Ð}{4}x$£©•cos$\frac{¦Ð}{4}x$-1£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚºÍµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©µ±x¡Ê[-1£¬1]ʱ£¬Çóº¯Êýf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=x2+bx£¬g£¨x£©=|x-1|£¬Èô¶ÔÈÎÒâx1£¬x2¡Ê[0£¬2]£¬µ±x1£¼x2ʱ¶¼ÓÐf£¨x1£©-f£¨x2£©£¼g£¨x1£©-g£¨x2£©£¬ÔòʵÊýbµÄ×îСֵΪ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÈôÃݺ¯Êýy=f£¨x£©µÄͼÏó¾­¹ýµã£¨$\frac{1}{3}$£¬3£©£¬Ôò¸ÃÃݺ¯ÊýµÄ½âÎöʽΪ£¨¡¡¡¡£©
A£®y=x-1B£®y=x${\;}^{\frac{1}{2}}$C£®y=x${\;}^{-\frac{1}{3}}$D£®y=x3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÈôÃݺ¯Êýy=f£¨x£©µÄͼÏó¹ýµã$£¨{\frac{1}{9}£¬\frac{1}{3}}£©$£¬Ôòf£¨16£©µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®2C£®$\frac{1}{4}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÎÒ¹ú¹Å´úÊýѧ¾ÞÖø¡¶¾ÅÕÂËãÊõ¡·ÖУ¬ÓÐÈçÏÂÎÊÌ⣺¡°½ñÓÐÅ®×ÓÉÆÖ¯£¬ÈÕ×Ô±¶£¬ÎåÈÕÖ¯Îå³ß£¬ÎÊÈÕÖ¯¼¸ºÎ£¿¡±Õâ¸öÎÊÌâÓýñÌìµÄ°×»°ÐðÊöΪ£ºÓÐÒ»Î»ÉÆÓÚÖ¯²¼µÄÅ®×Ó£¬Ã¿ÌìÖ¯µÄ²¼¶¼ÊÇǰһÌìµÄ2±¶£¬ÒÑÖªËý5Ìì¹²Ö¯²¼5³ß£¬ÎÊÕâλŮ×ÓÿÌì·Ö±ðÖ¯²¼¶àÉÙ£¿¡±¸ù¾ÝÉÏÌâµÄÒÑÖªÌõ¼þ£¬¿ÉÇóµÃ¸ÃÅ®×ÓµÚ4ÌìËùÖ¯²¼µÄ³ßÊýΪ¡±£¨¡¡¡¡£©
A£®$\frac{8}{15}$B£®$\frac{16}{15}$C£®$\frac{20}{31}$D£®$\frac{40}{31}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸