精英家教网 > 高中数学 > 题目详情
4.中国古代数学名著《九章算术》中记载了公元前344年商鞅造的一种标准量器--商鞅铜方升,其三视图如图所示(单位:寸),若π取为3,其体积为12.6(立方升),则三视图中x的为(  )
A.3.4B.4.0C.3.8D.3.6

分析 根据三视图得到商鞅铜方升由一圆柱和一个长方体组合而成,结合体积公式进行计算即可.

解答 解:由三视图知,该商鞅铜方升由一圆柱和一个长方体组合而成,
由题意得3×x×1+π$•(\frac{1}{2})^{2}(5,4-x)$=12.6,
得x=3.8,
故选:C

点评 本题主要考查三视图的应用以及空间几何体的体积的计算,根据三视图了解几何体的构成是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图边长为2的正方体ABCD-A1B1C1D1中,M、N分别是CC1,B1C1的中点.
(1)证明;A1N∥平面AMD1
(2)求二面角M-AD1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC中,AB=4,AC=2,${S_{△ABC}}=2\sqrt{3}$,求△ABC外接圆面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数(1-i)•(1+i)的值是(  )
A.-2iB.2iC.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow m,\overrightarrow n$分别是直线l的方向向量和平面α的法向量,若$cos\left?{\overrightarrow m,\left.{\overrightarrow n}\right>}\right.=-\frac{1}{2}$,则l与α所成的角为(  )
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知A={x|x2-2x-3<0},B={x|x2-5x+6<0}.
(1)求A∩B;
(2)若不等式x2+ax+b<0的解集是A∩B,求x2+ax-b<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知实数x满足32x-4-$\frac{10}{3}$•3x-1+9≤0,且$f(x)={log_2}\frac{x}{2}•{log_2}\frac{{\sqrt{x}}}{2}$.
(1)求实数x的取值范围;
(2)求f(x)的最大值和最小值,并求此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.现有四个推理:
①在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”;
②由“若数列{an}为等差数列,则有$\frac{{a}_{6}+{a}_{7}+…+{a}_{10}}{5}$=$\frac{{a}_{1}+{a}_{2}+…+{a}_{15}}{15}$成立”类比“若数列{bn}为等比数列,则有$\root{5}{{b}_{6}{b}_{7}…{b}_{10}}$=$\root{15}{{b}_{1}{b}_{2}…{b}_{15}}$成立”;
③由实数运算中,(a•b)•c=a•(b•c),可以类比得到在向量中,($\overrightarrow{a}•\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}•\overrightarrow{c}$),
④在实数范围内“5-3=2>0⇒5>3”,类比在复数范围内,“5+2i-(3+2i)=2>0⇒5+2i>3+2i”;
则得出的结论正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图为函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)图象的一部分.
(1)当x∈[-$\frac{π}{12}$,$\frac{π}{2}$]时,求函数f(x)的值域;
(2)若将函数y=f(x)图象向左平移$\frac{π}{6}$的单位后,得到函数y=g(x)的图象,若g(x)≥$\frac{\sqrt{3}}{2}$,求x的取值范围.

查看答案和解析>>

同步练习册答案